Preprint
Article

This version is not peer-reviewed.

Mining Stack Overflow: a Recommender Systems-Based Model

Submitted:

11 August 2020

Posted:

04 September 2020

You are already at the latest version

Abstract
In software development, developers received bug reports that describe the software bug. Developers find the cause of bug through reviewing the code and reproducing the abnormal behavior that can be considered as tedious and time-consuming processes. The developers need an automated system that incorporates large domain knowledge and recommends a solution for those bugs to ease on developers rather than spending more manual efforts to fixing the bugs or waiting on Q&A websites for other users to reply to them. Stack Overflow is a popular question-answer site that is focusing on programming issues, thus we can benefit knowledge available in this rich platform. This paper, presents a survey covering the methods in the field of mining software repositories. We propose an architecture to build a recommender System using the learning to rank approach. Deep learning is used to construct a model that solve the problem of learning to rank using stack overflow data. Text mining techniques were invested to extract, evaluate and recommend the answers that have the best relevance with the solution of this bug report.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated