Preprint
Article

This version is not peer-reviewed.

Comparative Study of Clustering Approaches Applied to Spatial or Temporal Pattern Discovery

A peer-reviewed article of this preprint also exists.

Submitted:

07 August 2020

Posted:

08 August 2020

You are already at the latest version

Abstract
Many clustering approaches succeed in pattern segmentation in many applications. This unsupervised segmentation should be effective to reduce an expert labelling time: i.e, they must be able to detect the number of patterns and identify them in a sequence or map with the right cuts. Several direct and hierarchical clustering approaches are compared for this task. A divisive spectral clustering architecture with a no-cut criteria is also proposed. This new algorithm achieves promise segmentation of spatial UCI databases and marine time series compared to other approaches.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated