Preprint
Article

The Elementary Proof of the Riemann's Hypothesis

Altmetrics

Downloads

1498

Views

2756

Comments

1

This version is not peer-reviewed

Submitted:

05 July 2021

Posted:

06 July 2021

You are already at the latest version

Alerts
Abstract
This research paper aims to explicate the complex issue of the Riemann's Hypothesis and ultimately presents its elementary proof. The method implements one of the binomial coefficients, to demonstrate the maximal prime gaps bound. Maximal prime gaps bound constitutes a comprehensive improvement over the Bertrand's result, and becomes one of the key elements of the theory. Subsequently, implementing the theory of the primorial function and its error bounds, an improved version of the Gauss' offset logarithmic integral is developed. This integral serves as a Supremum bound of the prime counting function Pi(n). Due to its very high precision, it permits to verify the relationship between the prime counting function Pi(n) and the offset logarithmic integral of Carl Gauss. The collective mathematical theory, via the Niels F. Helge von Koch equation, enables to prove the RIemann's Hypothesis conclusively.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated