Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Exploiting Localized Surface Plasmon Resonances in Subwavelength Spiral Disks for THz Thin Film Sensing

Version 1 : Received: 22 April 2020 / Approved: 23 April 2020 / Online: 23 April 2020 (10:01:15 CEST)

A peer-reviewed article of this Preprint also exists.

Gerasimov, V.V.; Hafizov, R.R.; Kuznetsov, S.A.; Lazorskiy, P.A. Exploiting Localized Surface Plasmon Resonances in Subwavelength Spiral Disks for THz Thin Film Sensing. Appl. Sci. 2020, 10, 3595. Gerasimov, V.V.; Hafizov, R.R.; Kuznetsov, S.A.; Lazorskiy, P.A. Exploiting Localized Surface Plasmon Resonances in Subwavelength Spiral Disks for THz Thin Film Sensing. Appl. Sci. 2020, 10, 3595.

Journal reference: Appl. Sci. 2020, 10, 3595
DOI: 10.3390/app10103595

Abstract

In this paper, we study the sensing performance of metasurfaces comprised by spiral-disk-shaped metallic elements patterned on polypropylene substrates, which exhibit localized surface plasmon resonances in the low-frequency region of the THz spectrum (0.2-0.5 THz). Optimal designs of spiral disks with C-shaped resonators placed near the disks were determined and fabricated. The experimentally measured transmittance spectra of samples coated with very thin photoresistive layers (d ~ 10-4-10-3 λ) showed good agreement with simulations. The resonance frequency shift Δf increases with increasing d, while saturating near d = 50 µm. The narrow-band magnetic dark modes excited on symmetrical spiral disks with a 90⁰-C-resonator demonstrated very high FOM values reaching 1670 [RIU·mm]-1 at 0.3μm-thick analyte. The hybrid high order resonances excited on asymmetrical densely packed spiral disks showed about two times larger FOM values (up to 2950 [RIU·mm]-1) as compared to symmetrical distantly spaced spirals that resembles the best FOM results found in literature for metasurfaces fabricated with a similar technique. The demonstrated high sensing performance of spiral disks is evaluated to be promising for bio-sensing applications in the THz range.

Subject Areas

metasurface; localized surface plasmon resonance; thin-film sensor; terahertz.

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.