Preprint
Article

A New Intelligent Approach for Effective Recognition of Diabetes in the IoT E-HealthCare Environment

Altmetrics

Downloads

621

Views

438

Comments

0

Submitted:

28 February 2020

Posted:

29 February 2020

You are already at the latest version

Alerts
Abstract
A significant attention has been made to the accurate detection of diabetes which is a big challenge for the research community to develop a diagnosis system to detect diabetes in a successful way in the IoT e-healthcare environment. Internet of Things (IOT) has emerging role in healthcare services which delivers a system to analyze the medical data for diagnosis of diseases applied data mining methods. The existing diagnosis systems have some drawbacks, such as high computation time, and low prediction accuracy. To handle these issues, we have proposed a IOT based diagnosis system using machine learning methods, such as preprocessing of data, feature selection, and classification for the detection of diabetes disease in e- healthcare environment. Model validation and performance evaluation metrics have been used to check the validity of the proposed system. We have proposed a filter method based on the Decision Tree (Iterative Dichotomiser 3) algorithm for highly important feature selection. Two ensemble learning Decision Tree algorithms, such as Ada Boost and Random Forest are also used for feature selection and compared the classifier performance with wrapper based feature selection algorithms also. Machine learning classifier Decision Tree has been used for the classification of healthy and diabetic subjects. The experimental results show that the Decision Tree algorithm based on selected features improves the classification performance of the predictive model and achieved optimal accuracy. Additionally, the proposed system performance is high as compared to the previous state-of-the-art methods. High performance of the proposed method is due to the different combinations of selected features set and GL, DPF, and BMI are more significantly important features in the dataset for prediction of diabetes disease. Furthermore, the experimental results statistical analysis demonstrated that the proposed method would be effectively detected diabetes disease and can easily be deployed in IOT wireless sensor technologies based e-healthcare environment.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated