Preprint
Article

This version is not peer-reviewed.

Stability and Boundedness Properties of a Rational Exponential Difference Equation

Submitted:

31 December 2019

Posted:

31 December 2019

You are already at the latest version

Abstract
This article aims to discuss, the stability and boundedness character of the solutions of the rational equation of the form \begin{equation}\label{eql21.1} y_{t+1}=\frac{\nu\epsilon^{-y_t}+\delta\epsilon^{-y_{t-1}}}{\mu+\nu y_t+\delta y_{t-1}},\quad t\in N(0). \end{equation} Here, $\epsilon>1, \nu,\delta,\mu\in (0,\infty)$ and $y_0, y_1$ are taken as arbitrary non-negative reals and $N(a)=\{a,a+1,a+2,\cdots \}$. Relevant examples are provided to validate our results. The exactness is tested using MATLAB.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated