You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Review

Protein 0th-Order Structure: The Key for Creating Entirely New Gene/Protein

Altmetrics

Downloads

275

Views

241

Comments

0

This version is not peer-reviewed

Submitted:

02 December 2019

Posted:

03 December 2019

You are already at the latest version

Alerts
Abstract
Understanding the mechanism, how entirely new (EntNew) gene/protein or the first ancestral gene/protein of a family was created, should be one of the most important issues in the biological sciences. However, the mechanism is totally unknown still now. On the other hand, it is well known that mature protein is generally rigid and one catalytic center exists on the protein. Creation of such a mature EntNew gene/protein should be, of course, carried out through random process, because it cannot be designed in advance. However, the EntNew gene/protein never be created by random polymerization of the respective monomeric units, because of the extraordinary large sequence diversities of ~10180 and ~10130, respectively. Protein 0th-order structure or a specific amino acid composition, in which immature but water-soluble protein can be produced even through random process, holds the key for solving the difficult problem. As it was fragmentally described in the previous papers how and where EntNew gene/protein was created, I describe in detail in this review three processes generating EntNew gene/protein with some flexibility under three genetic codes, the universal genetic code, SNS primitive code and GNC primeval code, and discuss why the mature gene/protein could be created through the processes.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated