Preprint
Article

Self-Improving Generative Artificial Neural Network for Pseudo-Rehearsal Incremental Class Learning

Altmetrics

Downloads

378

Views

406

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 July 2019

Posted:

08 July 2019

You are already at the latest version

Alerts
Abstract
Deep learning models are part of the family of artificial neural networks and, as such, it suffers of catastrophic interference when they learn sequentially. In addition, most of these models have a rigid architecture which prevents the incremental learning of new classes. To overcome these drawbacks, in this article we propose the Self-Improving Generative Artificial Neural Network (SIGANN), a type of end-to-end Deep Neural Network system which is able to ease the catastrophic forgetting problem when leaning new classes. In this method, we introduce a novelty detection model to automatically detect samples of new classes, moreover an adversarial auto-encoder is used to produce samples of previous classes. This system consists of three main modules: a classifier module implemented using a Deep Convolutional Neural Network, a generator module based on an adversarial autoencoder; and a novelty detection module, implemented using an OpenMax activation function. Using the EMNIST data set, the model was trained incrementally, starting with a small set of classes. The results of the simulation show that SIGANN is able to retain previous knowledge with a gradual forgetfulness for each learning sequence. Moreover, SIGANN can detect new classes that are hidden in the data and, therefore, proceed with incremental class learning.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated