Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Improved in Vitro Test Procedure for Full Assessment of the Cytocompatibility of Degradable Magnesium Based on ISO 10993-5/-12

Version 1 : Received: 11 December 2018 / Approved: 12 December 2018 / Online: 12 December 2018 (15:43:04 CET)

A peer-reviewed article of this Preprint also exists.

Jung, O.; Smeets, R.; Hartjen, P.; Schnettler, R.; Feyerabend, F.; Klein, M.; Wegner, N.; Walther, F.; Stangier, D.; Henningsen, A.; Rendenbach, C.; Heiland, M.; Barbeck, M.; Kopp, A. Improved In Vitro Test Procedure for Full Assessment of the Cytocompatibility of Degradable Magnesium Based on ISO 10993-5/-12. Int. J. Mol. Sci. 2019, 20, 255. Jung, O.; Smeets, R.; Hartjen, P.; Schnettler, R.; Feyerabend, F.; Klein, M.; Wegner, N.; Walther, F.; Stangier, D.; Henningsen, A.; Rendenbach, C.; Heiland, M.; Barbeck, M.; Kopp, A. Improved In Vitro Test Procedure for Full Assessment of the Cytocompatibility of Degradable Magnesium Based on ISO 10993-5/-12. Int. J. Mol. Sci. 2019, 20, 255.

Abstract

Magnesium (Mg)-based biomaterials are promising candidates for bone and tissue regeneration. Alloying and surface modifications provide effective strategies for optimizing and tailoring their degradation kinetics. Nethertheless, biocompatibility analyses of Mg-based materials are challenging due to its special degradation mechanism with continous hydrogen release. In this context, the hydrogen release and the related (micro-) milieu conditions pretend to strictly follow in vitro standards based on ISO 10993-5/-12. Thus, special adaptions for the testing of Mg materials are necessary, which have been described in a previous study from our group. Based on these adaptions, further developments of a test procedure allowing rapid and effective in vitro cytocompatibility analyses of Mg-based materials based on ISO 10993-5/-12 are necessary. The following study introduces a new two-step test scheme for rapid and effective testing of Mg. Specimens with different surface characteristcis were produced by means of plasma electrolytic oxidation (PEO) using silicate-based and phosphate-based electrolytes. The test samples were evaluated for corrosion behavior, cytocompatibility and their mechanical and ostogenic properties. Thereby, two PEO ceramics could be identified for further in vivo evaluations.

Keywords

Bone tissue engineering, magnesium implants, ISO norms, in vitro, PEO

Subject

Medicine and Pharmacology, Dentistry and Oral Surgery

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.