Dickey, J.; Borghetti, B.; Junek, W. Improving Regional and Teleseismic Detection for Single-Trace Waveforms Using a Deep Temporal Convolutional Neural Network Trained with an Array-Beam Catalog. Sensors2019, 19, 597.
Dickey, J.; Borghetti, B.; Junek, W. Improving Regional and Teleseismic Detection for Single-Trace Waveforms Using a Deep Temporal Convolutional Neural Network Trained with an Array-Beam Catalog. Sensors 2019, 19, 597.
Dickey, J.; Borghetti, B.; Junek, W. Improving Regional and Teleseismic Detection for Single-Trace Waveforms Using a Deep Temporal Convolutional Neural Network Trained with an Array-Beam Catalog. Sensors2019, 19, 597.
Dickey, J.; Borghetti, B.; Junek, W. Improving Regional and Teleseismic Detection for Single-Trace Waveforms Using a Deep Temporal Convolutional Neural Network Trained with an Array-Beam Catalog. Sensors 2019, 19, 597.
Abstract
The detection of seismic events at regional and teleseismic distances is critical to Nuclear Treaty Monitoring. Traditionally, detecting regional and teleseismic events has required the use of an expensive multi-instrument seismic array; however in this work, we present DeepPick, a novel seismic detection algorithm capable of array-like performance from a single trace. We achieve this directly, by training our single-trace detector against labeled events from an array catalog, and by utilizing a deep temporal convolutional neural network. The training data consists of all arrivals in the International Seismological Centre Catalog for seven seismic arrays over a five year window from 1 Jan 2010 to 1 Jan 2015, yielding a total training set of 608,362 detections. The test set consists of the same seven arrays over a one year window from 1 Jan 2015 to 1 Jan 2016. We report our results by training the algorithm on six of the arrays and testing it on the seventh, so as to demonstrate the transportability and generalization of the technique to new stations. Detection performance against this test set is outstanding. Fixing a type-I error rate of 1%, the algorithm achieves an overall recall rate of 73% on the 141,095 array beam picks in the test set, yielding 102,394 correct detections. This is more than 4 times the 23,259 detections found in the analyst-reviewed single-trace catalogs over the same period, and represents an 8dB improvement in detector sensitivity over current methods. These results demonstrate the potential of our algorithm to significantly enhance the effectiveness of the global treaty monitoring network.
Keywords
geophysical signal processing; pattern recognition; temporal convolutional neural networks; seismology; deep learning; nuclear treaty monitoring
Subject
Environmental and Earth Sciences, Geophysics and Geology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.