Preprint
Article

This version is not peer-reviewed.

NLP Formulation for Polygon Optimization Problems

A peer-reviewed article of this preprint also exists.

Submitted:

11 November 2018

Posted:

13 November 2018

You are already at the latest version

Abstract
In this paper, we generalize the problems of finding simple polygons with the minimum area, maximum perimeter and maximum number of vertices so that they contain a given set of points and their angles are bounded by $\alpha+\pi$ where $\alpha$ ($0\leq\alpha\leq \pi$) is a parameter. We also consider the maximum angle of each possible simple polygon crossing a given set of points, and derive an upper bound for the minimum of these angles. The correspondence between the problems of finding simple polygons with the minimum area and maximum number of vertices is investigated from a theoretical perspective. We formulate the three generalized problems as nonlinear programming models, and then present a Genetic Algorithm to solve them. Finally, the computed solutions are evaluated on several datasets and the results are compared with those from the optimal approach.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated