Continuous research into the availability of phosphorus (P) in forest soil is critical for sustainable management of forest ecosystems. In this study, we used sequential chemical extraction and 31P-nuclear magnetic resonance spectroscopy (31P-NMR) to evaluate the form and distribution of inorganic P (Pi) and organic P (Po) in Casuarina forest soils of a subtropical coastal sand dune at Houlong in Taiwan. The soil samples were collected from humic (+2-0 cm) and mineral layers (mineral-I: 0-10, mineral-II: 10-20 cm) at two topographic locations (upland and lowland) by elevation. Sequential chemical extraction revealed that the NaOH-Po fraction, as moderately recalcitrant P, was the dominant form in humic and mineral-I layers in both upland and lowland soils, whereas the cHCl-Pi fraction was the dominant form in the mineral-II layer. Resistant P content, including NaOH-Pi, HCl-Pi, cHCl-Pi, and cHCl-Po fractions, was higher in the upland than lowland in the corresponding layers; however, labile P content, NaHCO3-Po, showed the opposite pattern. Content of resistant Pi (NaOH-Pi, HCl-Pi, and cHCl-Pi) increased significantly with depth, but that of labile Pi (resin-Pi and NaHCO3-Pi) and recalcitrant Po (NaHCO3-Po, NaOH-Po, and cHCl-Po) decreased significantly with depth at both locations. 31P-NMR spectroscopy revealed inorganic orthophosphate and monoesters-P as the major forms in this area. The proportions of Pi and Po evaluated by sequential chemical extraction and 31P-NMR spectroscopy were basically consistent. The results indicated that the soils were in weathered conditions. Furthermore, the P distribution and forms significantly differed between the upland and lowland by variation in elevation and eolian aggradation effects in this coastal sand dune landscape.
Keywords
sequential chemical extraction; 31P-nuclear magnetic resonance spectroscopy (31P-NMR); phosphorus; coastal sand dune; Casuarina forests
Subject
Biology and Life Sciences, Forestry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.