Preprint
Article

This version is not peer-reviewed.

Metric Learning Tutorial

Submitted:

07 September 2018

Posted:

07 September 2018

You are already at the latest version

Abstract
Most popular machine learning algorithms like k-nearest neighbour, k-means, SVM uses a metric to identify the distance(or similarity) between data instances. It is clear that performances of these algorithm heavily depends on the metric being used. In absence of prior knowledge about data we can only use general purpose metrics like Euclidean distance, Cosine similarity or Manhattan distance etc, but these metric often fail to capture the correct behaviour of data which directly affects the performance of the learning algorithm. Solution to this problem is to tune the metric according to the data and the problem, manually deriving the metric for high dimensional data which is often difficult to even visualize is not only tedious but is extremely difficult. Which leads to put effort on \textit{metric learning} which satisfies the data geometry.Goal of metric learning algorithm is to learn a metric which assigns small distance to similar points and relatively large distance to dissimilar points.
Keywords: 
;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated