Ice covering on overhead transmission lines would cause damage to transmission system and long-term power outage. Among various de-icing devices, modular multilevel converter (MMC) based DC de-icer (MMC-DDI) is recognized as a promising solution due to its excellent technical performance. Its principle feasibility has been well studied, but few literature discuss its economy or hardware optimization, thus the designed MMC-DDI for high voltage transmission lines is usually too large and too expensive for engineering applications. To fill this gap, this paper presents a quantitative analysis on the converter characteristics of MMC-DDI, and calculates the minimal converter rating and its influencing factors. It reals that, for a given de-icing requirement, the converter rating varies greatly with its AC-side voltage. Then an optimization configuration is proposed to reduce the converter rating and improve its economy. The proposed configuration is verified in a MMC-DDI for a 500kV transmission line as a case study. The result shows, in the case of outputting same de-icing characteristics, the optimized converter rating is reduced from 151 MVA to 68 MVA, and total cost of MMC-DDI is reduced by 48%. This analysis and conclusion are conductive to the optimized design of multilevel DC de-icer, then to its engineering application.