Preprint Review Version 1 This version is not peer-reviewed

Data Normalization in NMR-based Metabolomics

Version 1 : Received: 2 July 2018 / Approved: 3 July 2018 / Online: 3 July 2018 (16:22:31 CEST)

A peer-reviewed article of this Preprint also exists.

Zacharias, H.U.; Altenbuchinger, M.; Gronwald, W. Statistical Analysis of NMR Metabolic Fingerprints: Established Methods and Recent Advances. Metabolites 2018, 8, 47. Zacharias, H.U.; Altenbuchinger, M.; Gronwald, W. Statistical Analysis of NMR Metabolic Fingerprints: Established Methods and Recent Advances. Metabolites 2018, 8, 47.

Journal reference: Metabolites 2018, 8, 47
DOI: 10.3390/metabo8030047

Abstract

The aim of this article is to summarize recent bioinformatic and statistical developments applicable to NMR-based metabolomics. Extracting relevant information from large multivariate datasets by statistical data analysis strategies may be of considerable complexity. Typical tasks comprise for example classification of specimens, identification of differentially produced metabolites, and estimation of fold changes. In this context it is of prime importance to minimize contributions from unwanted biases and experimental variance prior to these analyses. This is the goal of data normalization. Therefore, special emphasize is given to different data normalization strategies. In the first part, we will discuss the requirements and the pros and cons for a variety of commonly applied strategies. In the second part, we will concentrate on possible solutions in case that the requirements for the standard strategies are not fulfilled. In the last part, very recent developments will be discussed that allow reliable estimation of metabolic signatures for sample classification without prior data normalization. In this contribution special emphasis will be given to techniques that have worked well in our hands.

Subject Areas

data normalization; data scaling; zero-sum; metabolic fingerprinting; NMR; statistical data analysis

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.