Ni Lochlainn, M.; Bowyer, R.C.E.; Steves, C.J. Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome. Nutrients2018, 10, 929.
Ni Lochlainn, M.; Bowyer, R.C.E.; Steves, C.J. Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome. Nutrients 2018, 10, 929.
Ni Lochlainn, M.; Bowyer, R.C.E.; Steves, C.J. Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome. Nutrients2018, 10, 929.
Ni Lochlainn, M.; Bowyer, R.C.E.; Steves, C.J. Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome. Nutrients 2018, 10, 929.
Abstract
Muscle mass, strength and physical function are known to decline with age. This is associated with the development of geriatric syndromes including sarcopenia and frailty. These conditions are associated with disability, falls, longer hospital stay, higher readmission rates, institutionalisation, osteoporosis, and death. Moreover, they are associated with reduced quality of life, as well as substantial costs to health services around the world. Dietary protein is essential for skeletal muscle function. Older adults have shown evidence of anabolic resistance, where greater amounts of protein are required to stimulate muscle protein synthesis and therefore require higher daily amounts of dietary protein. Research shows that resistance exercise has the most beneficial effect on preserving skeletal muscle. A synergistic effect has been noted when this is combined with dietary protein, yet studies in this area lack consistency. This is due, in part, to the variation that exists within dietary protein, in terms of dose, quality, source, amino acid composition and timing. Research has targeted participants that are replete in dietary protein with negative results. Inconsistent measures of muscle mass, muscle function, physical activity and diet are used. This review attempts to summarise these issues, as well as introduce the possible role of the gut microbiome and its metabolome in this area.
Keywords
protein; skeletal muscle; sarcopenia; gut microbiome; metabolome; diet; supplementation
Subject
Biology and Life Sciences, Food Science and Technology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.