Astronomical X-ray polarimetry was first explored in the end of the 60's by pioneering rocket instruments. The craze arising from the first discoveries on stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters on-board of early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled to long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000's, the possibility to observe astronomical X-ray polarization is rising again and scientists are now ready to explore the high energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (both rockets, balloons and satellites) will open a new observational windows. A wind of renewal blows over the area of X-ray polarimetry and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of interest for astronomical X-ray polarimetry.