Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Analytical Study of Colour Spaces for Plant Pixel Detection

Version 1 : Received: 15 December 2017 / Approved: 15 December 2017 / Online: 15 December 2017 (16:52:23 CET)

A peer-reviewed article of this Preprint also exists.

Kumar, P.; Miklavcic, S.J. Analytical Study of Colour Spaces for Plant Pixel Detection. J. Imaging 2018, 4, 42. Kumar, P.; Miklavcic, S.J. Analytical Study of Colour Spaces for Plant Pixel Detection. J. Imaging 2018, 4, 42.


Segmentation of a region of interest is an important pre-processing step for many colour image analysis techniques. Similarly segmentation of plant in digital images is an important preprocessing step in phenotying plants by image analysis. In this paper we present an analytical study to statistically determine the suitability of colour space representation of an image to best detect plant pixels and separate them from background pixels. Our hypothesis is that the colour space representation in which the separation of the distributions representing plant pixels and background pixels is maximized would be the best for detection of plant pixels. The two classes of pixels are modelled as a Gaussian mixture model (GMM). In our GM modelling we don't make any prior assumption about the number of Gaussians in the model. Rather a constant bandwidth mean-shift filter is used to cluster the data and the number of clusters and hence the number of Gaussians is automatically determined. Here we have analysed following representative colour spaces like $RGB$, $rgb$, $HSV$, $Ycbcr$ and $CIE-Lab$. This is because these colour spaces represent several other similar colour spaces and also an exhaustive study of all the colour space will be too voluminous. We also analyse the colour space feature from the two-class variance ratio perspective and compare the results of our hypothesis with this metric. The dataset for this empirical study consist of 378 digital images of plants and their manual segmentation. Dataset consist of various species of plants (arabidopsi, tobacco, wheat, rye grass etc.) imaged under different lighting conditions, indoor and outdoor, controlled and uncontrolled background. In results we obtain better segmentation of the plants in $HSV$ colour space, which is supported by its Earth mover distance (EMD) on the GMM distribution of plant and background pixels.


Plant phenotyping, Plant pixel classification, Colour space, , Gaussian mixture model, Earth mover distance, Variance ratio, Plant segmentation.


Computer Science and Mathematics, Computer Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.