In the paper, the author (1) presents an explicit formula and its inversion formula for higher order derivatives of generating functions of the Bell polynomials, with the help of the Faà di Bruno formula, properties of the Bell polynomials of the second kind, and the inversion theorem for the Stirling numbers of the first and second kinds; (2) recovers an explicit formula and its inversion formula for the Bell polynomials in terms of the Stirling numbers of the first and second kinds, with the aid of the above explicit formula and its inversion formula for higher order derivatives of generating functions of the Bell polynomials; (3) constructs some determinantal and product inequalities and deduces the logarithmic convexity of the Bell polynomials, with the assistance of the complete monotonicity of generating functions of the Bell polynomials. These inequalities are main results of the paper.