Preprint
Article

A Software Reliability Model with a Weibull Fault Detection Rate Function Subject to Operating Environments

Altmetrics

Downloads

980

Views

604

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

18 August 2017

Posted:

18 August 2017

You are already at the latest version

Alerts
Abstract
The main focus when developing software is to improve the reliability and stability of a software system. When software systems are introduced, these systems are used in field environments that are the same as or close to those used in the development-testing environment; however, they may also be used in many different locations that may differ from the environment in which they were developed and tested. In this paper, we propose a new software reliability model that takes into account the uncertainty of operating environments. The explicit mean value function solution for the proposed model is presented. Examples are presented to illustrate the goodness-of-fit of the proposed model and several existing non-homogeneous Poisson process (NHPP) models and confidence intervals of all models based on two sets of failure data collected from software applications. The results show that the proposed model fits the data more closely than other existing NHPP models to a significant extent.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated