# Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals

A peer-reviewed article of this Preprint also exists.

Naef, R.; Acree, W.E. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals. *Molecules* **2017**, *22*, 1059.
Naef, R.; Acree, W.E. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals. Molecules 2017, 22, 1059.

Journal reference: Molecules 2017, 22, 1059

DOI: 10.3390/molecules22071059

## Abstract

^{2}) and the standard deviation (σ) of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol (N=3386 test molecules) for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol (N=1791) for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol (N=373) for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K (N=2637) for the entropy of fusion and 0.5804 and 32.79 J/mol/K (N=2643) for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules, for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation coefficient R

^{2}of 0.6066.

## Subject Areas

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## Readers' Comments and Ratings (0)

Send a private comment to the author(s)

Rate this article