Domingo, L.R.; Ríos-Gutiérrez, M. A Molecular Electron Density Theory Study of the Reactivity of Azomethine Imine in [3+2] Cycloaddition Reactions. Molecules2017, 22, 750.
Domingo, L.R.; Ríos-Gutiérrez, M. A Molecular Electron Density Theory Study of the Reactivity of Azomethine Imine in [3+2] Cycloaddition Reactions. Molecules 2017, 22, 750.
Domingo, L.R.; Ríos-Gutiérrez, M. A Molecular Electron Density Theory Study of the Reactivity of Azomethine Imine in [3+2] Cycloaddition Reactions. Molecules2017, 22, 750.
Domingo, L.R.; Ríos-Gutiérrez, M. A Molecular Electron Density Theory Study of the Reactivity of Azomethine Imine in [3+2] Cycloaddition Reactions. Molecules 2017, 22, 750.
Abstract
The electronic structure and the participation of the simplest azomethine imine (AI) in [3+2] cycloaddition (32CA) reactions have been analysed within the Molecular Electron Density Theory (MEDT) using DFT calculations at the MPWB1K/6-311G(d) level. Electron localisation function (ELF) topological analysis reveals that AI has a pseudoradical structure, while the conceptual DFT reactivity indices characterise this TAC as a moderate electrophile and a good nucleophile. The non-polar 32CA reaction of AI with ethylene takes place through a one-step mechanism with low activation energy, 5.3 kcal/mol-1. A bonding evolution theory (BET) study indicates that this reaction takes place through a non-concerted [2n+2τ] mechanism in which the C–C bond formation is clearly anticipated prior to the C–N one. On the other hand, the polar 32CA reaction of AI with dicyanoethylene takes place through a two-stage one-step mechanism. Now, the more favourable regioisomeric transition state structure (TS) is located 8.5 kcal•mol−1 below the reagents, in complete agreement with the high polar character of the TS. The current MEDT study makes it possible to extend Domingo’s classification of 32CA reactions to a new pra-type of reactivity.
Keywords
azomethine imine; [3+2] cycloaddition reactions; molecular electron density theory; conceptual density functional theory; electron localisation function; bonding evolution theory; electron density; molecular mechanisms; chemical reactivity.
Subject
Chemistry and Materials Science, Organic Chemistry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.