Montagnier, L.; Aïssa, J.; Capolupo, A.; Craddock, T.J.A.; Kurian, P.; Lavallee, C.; Polcari, A.; Romano, P.; Tedeschi, A.; Vitiello, G. Water Bridging Dynamics of Polymerase Chain Reaction in the Gauge Theory Paradigm of Quantum Fields. Water2017, 9, 339.
Montagnier, L.; Aïssa, J.; Capolupo, A.; Craddock, T.J.A.; Kurian, P.; Lavallee, C.; Polcari, A.; Romano, P.; Tedeschi, A.; Vitiello, G. Water Bridging Dynamics of Polymerase Chain Reaction in the Gauge Theory Paradigm of Quantum Fields. Water 2017, 9, 339.
Abstract
We discuss the role of water bridging the DNA-enzyme interaction by resorting to recent 1 results showing that London dispersion forces between delocalized electrons of base pairs of DNA 2 are responsible for the formation of dipole modes that can be recognized by Taq polymerase. 3 We describe the dynamical origin of the high efficiency and precise targeting of Taq activity in 4 PCR. The spatiotemporal distribution of interaction couplings, frequencies, amplitudes, and phase 5 modulations comprise a pattern of fields instantiating the electromagnetic image of DNA in its 6 water environment, which is what the polymerase enzyme actually recognizes at long range. The 7 experimental realization of PCR amplification, achieved through replacement of the DNA template 8 by the treatment of pure water with electromagnetic signals recorded from viral and bacterial DNA 9 solutions, is found consistent with the gauge theory paradigm of quantum fields.
Keywords
water bridging; dipole waves; coherent states; polymerase chain reaction; DNA amplification; DNA transduction; enzyme catalytic activity; fractal-like self-similarity
Subject
LIFE SCIENCES, Molecular Biology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.