Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Water Bridging Dynamics of Polymerase Chain Reaction in the Gauge Theory Paradigm of Quantum Fields

Version 1 : Received: 24 April 2017 / Approved: 25 April 2017 / Online: 25 April 2017 (04:24:21 CEST)

A peer-reviewed article of this Preprint also exists.

Montagnier, L.; Aïssa, J.; Capolupo, A.; Craddock, T.J.A.; Kurian, P.; Lavallee, C.; Polcari, A.; Romano, P.; Tedeschi, A.; Vitiello, G. Water Bridging Dynamics of Polymerase Chain Reaction in the Gauge Theory Paradigm of Quantum Fields. Water 2017, 9, 339. Montagnier, L.; Aïssa, J.; Capolupo, A.; Craddock, T.J.A.; Kurian, P.; Lavallee, C.; Polcari, A.; Romano, P.; Tedeschi, A.; Vitiello, G. Water Bridging Dynamics of Polymerase Chain Reaction in the Gauge Theory Paradigm of Quantum Fields. Water 2017, 9, 339.

Abstract

We discuss the role of water bridging the DNA-enzyme interaction by resorting to recent 1 results showing that London dispersion forces between delocalized electrons of base pairs of DNA 2 are responsible for the formation of dipole modes that can be recognized by Taq polymerase. 3 We describe the dynamical origin of the high efficiency and precise targeting of Taq activity in 4 PCR. The spatiotemporal distribution of interaction couplings, frequencies, amplitudes, and phase 5 modulations comprise a pattern of fields instantiating the electromagnetic image of DNA in its 6 water environment, which is what the polymerase enzyme actually recognizes at long range. The 7 experimental realization of PCR amplification, achieved through replacement of the DNA template 8 by the treatment of pure water with electromagnetic signals recorded from viral and bacterial DNA 9 solutions, is found consistent with the gauge theory paradigm of quantum fields.

Keywords

water bridging; dipole waves; coherent states; polymerase chain reaction; DNA amplification; DNA transduction; enzyme catalytic activity; fractal-like self-similarity

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.