Wojkowska, D.W.; Szpakowski, P.; Glabinski, A. Interleukin 17A Promotes Lymphocytes Adhesion and Induces CCL2 and CXCL1 Release from Brain Endothelial Cells. Int. J. Mol. Sci.2017, 18, 1000.
Wojkowska, D.W.; Szpakowski, P.; Glabinski, A. Interleukin 17A Promotes Lymphocytes Adhesion and Induces CCL2 and CXCL1 Release from Brain Endothelial Cells. Int. J. Mol. Sci. 2017, 18, 1000.
Wojkowska, D.W.; Szpakowski, P.; Glabinski, A. Interleukin 17A Promotes Lymphocytes Adhesion and Induces CCL2 and CXCL1 Release from Brain Endothelial Cells. Int. J. Mol. Sci.2017, 18, 1000.
Wojkowska, D.W.; Szpakowski, P.; Glabinski, A. Interleukin 17A Promotes Lymphocytes Adhesion and Induces CCL2 and CXCL1 Release from Brain Endothelial Cells. Int. J. Mol. Sci. 2017, 18, 1000.
Abstract
The nature of the interaction between Th17 cells and the blood-brain barrier (BBB) is critical for the development of autoimmune inflammation in the central nervous system (CNS). TNF-a or IL-17 stimulation is known to enhance the adherence of Th17 cells to the brain endothelium. The brain endothelial cells (bEnd.3) express VCAM-1, the receptor responsible for inflammatory cell adhesion, which binds VLA-4 on migrating effector lymphocytes at the early stage of brain inflammation. The present study examines the effect of the pro-inflammatory cytokines TNF-a and IL-17 on the adherence of Th17 cells to bEnd.3 The bEnd.3 cells were found to increase production of CCL2 and CXCL1 after stimulation by pro-inflammatory cytokines, while CCL2, CCL5, CCL20 and IL17 induced Th17 cell migration through a bEnd.3 monolayer. This interaction between Th17 cells and the brain endothelium appears to be mediated by VCAM-1 and some chemotactic cytokines. This observation may suggest potential therapeutic targets for the prevention of autoimmune neuroinflammation development in the CNS.
Biology and Life Sciences, Cell and Developmental Biology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.