Shimazaki, E.; Karakida, T.; Yamamoto, R.; Kobayashi, S.; Fukae, M.; Yamakoshi, Y.; Asada, Y. TGF-β and Physiological Root Resorption of Deciduous Teeth. Int. J. Mol. Sci.2017, 18, 49.
Shimazaki, E.; Karakida, T.; Yamamoto, R.; Kobayashi, S.; Fukae, M.; Yamakoshi, Y.; Asada, Y. TGF-β and Physiological Root Resorption of Deciduous Teeth. Int. J. Mol. Sci. 2017, 18, 49.
Shimazaki, E.; Karakida, T.; Yamamoto, R.; Kobayashi, S.; Fukae, M.; Yamakoshi, Y.; Asada, Y. TGF-β and Physiological Root Resorption of Deciduous Teeth. Int. J. Mol. Sci.2017, 18, 49.
Shimazaki, E.; Karakida, T.; Yamamoto, R.; Kobayashi, S.; Fukae, M.; Yamakoshi, Y.; Asada, Y. TGF-β and Physiological Root Resorption of Deciduous Teeth. Int. J. Mol. Sci. 2017, 18, 49.
Abstract
The present study was performed to examine that transforming growth factor beta (TGF-β) in root-surrounding tissues on deciduous teeth during the physiological root resorption regulates the differentiation induction into odontoclast. We prepared root-surrounding tissues with (R) or without (N) physiological root resorption scraped off at three regions (R1-R3 or N1-N3) from the cervical area to the apical area of the tooth and measured both TGF-β and the tartrate-resistant acid phosphatase (TRAP) activities. The TGF-β activity level was increased in N1-N3, whereas the TRAP activity was increased in R2 and R3. In vitro experiments for RANKL-mediated osteoclast differentiation revealed that TGF-β in N1-N3 and R1-R3 enhanced the TRAP activity in RAW264 cells. A genetic study indicated that the mRNA level of TGF-β1 in N1 and N2 was significantly increased, and corresponded with that of osteoprotegerin (OPG). In contrast, the expression level of receptor activator of NF-κB ligand (RANKL) was increased in R2 and R3. Our findings suggest that TGF-β is closely related to the regulation of OPG induction and RANKL-mediated odontoclast differentiation depending on the timing of RANKL and OPG mRNA expression in the root-surrounding tissues of deciduous teeth during physiological root resorption.
Keywords
cytokine; gene expression; osteoclast; root resorption; pediatric dentistry; protein expression
Subject
Biology and Life Sciences, Cell and Developmental Biology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.