Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Predicting the Outcome of NBA Playoffs Based on Maximum Entropy Principle

Version 1 : Received: 26 September 2016 / Approved: 27 September 2016 / Online: 27 September 2016 (11:10:50 CEST)

A peer-reviewed article of this Preprint also exists.

Cheng, G.; Zhang, Z.; Kyebambe, M.N.; Kimbugwe, N. Predicting the Outcome of NBA Playoffs Based on the Maximum Entropy Principle. Entropy 2016, 18, 450. Cheng, G.; Zhang, Z.; Kyebambe, M.N.; Kimbugwe, N. Predicting the Outcome of NBA Playoffs Based on the Maximum Entropy Principle. Entropy 2016, 18, 450.

Abstract

Predicting the outcome of a future game between two National Basketball Association (NBA) teams poses a challenging problem of interest to statistical scientists as well as the general public. In this article, we formalize the problem of predicting the game results as a classification problem and apply the principle of maximum entropy to construct NBA maximum entropy (NBAME) model that fits to discrete statistics for NBA games, and then predict the outcomes of NBA playoffs by the NBAME model. The best NBAME model is able to correctly predict the winning team 74.4 percent of the time as compared to some other machine learning algorithms which is correct 69.3 percent of the time.

Keywords

Maximum entropy model; K-means clustering; accuracy; classification; sports forecasting

Subject

Computer Science and Mathematics, Computational Mathematics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.