Submitted:

27 July 2016

Posted:

27 July 2016

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The cell case temperature versus time profiles of a multistage fast charging technique (4C-1C-CV)/fast discharge (4C) in a 2.3 Ah cylindrical lithium-ion cell are analyzed using a 1D thermal model. Heat generation is dominated by the irreversible component associated to cell overpotential, although evidences of the reversible component are also observed, associated to the heat related to entropy from the electrode reactions. The final charging stages (i.e., 1C-CV) significantly reduce heat generation and cell temperature during charge, resulting in a thermally safe charging protocol. Cell heat capacity was determined from cell specific heats and cell materials thickness. The 1D model adjustment of the experimental data during the 2 min. resting period between discharge and charge allowed us to calculate both the time constant of the relaxation process and the cell thermal resistance. The obtained values of these thermal parameters used in the proposed model are almost equal to those found in the literature for the same cell model, which suggests that the proposed model is suitable for its implementation in thermal management systems.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1914

Views

1376

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated