Preprint
Article

This version is not peer-reviewed.

Garments Texture Design Class Identification Using Deep Convolutional Neural Network

Submitted:

27 July 2016

Posted:

27 July 2016

You are already at the latest version

Abstract
Automatic garments design class identification for recommending the fashion trends is important nowadays because of the rapid growth of online shopping. By learning the properties of images efficiently, a machine can give better accuracy of classification. Several methods, based on Hand-Engineered feature coding exist for identifying garments design classes. But, most of the time, those methods do not help to achieve better results. Recently, Deep Convolutional Neural Networks (CNNs) have shown better performances for different object recognition. Deep CNN uses multiple levels of representation and abstraction that helps a machine to understand the types of data (images, sound, and text) more accurately. In this paper, we have applied deep CNN for identifying garments design classes. To evaluate the performances, we used two well-known CNN models AlexNet and VGGNet on two different datasets. We also propose a new CNN model based on AlexNet and found better results than existing state-of-the-art by a significant margin.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated