Submitted:
15 November 2025
Posted:
17 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
3. Methodology
4. Results
| Model | Accuracy | Precision | Recall | F1 Score | Confusion Matrix |
| Logistic Regression | 45.07% | 42.55% | 45.07% | 36.75% | [[219, 55, 540], [151, 55, 791], [117, 40, 1116]] |
| KNN | 66.28% | 66.55% | 66.28% | 66.30% | [[293, 249, 272], [273, 315, 409], [303, 459, 492]] |
| Random Forest | 64.03% | 61.00% | 54.00% | 47.00% | [[310, 250, 254], [311, 324, 362], [321, 456, 477]] |
| SVM | 46.63% | 44.24% | 46.63% | 41.90% | [[303, 95, 416], [199, 132, 666], [138, 132, 1115]] |
| Gradient Boosting | 74.07% | 72.57% | 74.07% | 72.50% | [[313, 169, 332], [219, 235, 543], [154, 308, 923]] |
5. Conclusion
References
- Cordero, J., Aguilar, J., Aguilar, K., Chávez, D., & Puerto, E. (2020). Recognition of the driving style in vehicle drivers. Sensors, 20(9), 2597.
- Dipu, M. T. A., Hossain, S. S., Arafat, Y., & Rafiq, F. B. (2021). Real-time driver drowsiness detection using deep learning. International Journal of Advanced Computer Science and Applications, 12(7).
- Wang, H., Wang, X., Han, J., Xiang, H., Li, H., Zhang, Y., & Li, S. (2022). A recognition method of aggressive driving behavior based on ensemble learning. Sensors, 22(2), 644.
- Prezioso, E., Giampaolo, F., Mazzocca, C., Bujari, A., Mele, V., & Amato, F. (2021). Machine learning insights for behavioral data analysis supporting the autonomous vehicles scenario. IEEE Internet of Things Journal, 10(4), 3107-3117.
- Kashevnik, A., Lashkov, I., Ponomarev, A., Teslya, N., & Gurtov, A. (2020). Cloud-based driver monitoring system using a smartphone. IEEE Sensors Journal, 20(12), 6701-6715.
- Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driving task.
- Bravi, L., Kubin, L., Caprasecca, S., de Andrade, D. C., Simoncini, M., Taccari, L., & Sambo, F. (2021). Detection of stop sign violations from dashcam data. IEEE transactions on intelligent transportation systems, 23(6), 5411-5420.
- Hossain, M. U., Rahman, M. A., Islam, M. M., Akhter, A., Uddin, M. A., & Paul, B. K. (2022). Automatic driver distraction detection using deep convolutional neural networks. Intelligent Systems with Applications, 14, 200075.
- Ma, Y., Zhang, Z., Chen, S., Yu, Y., & Tang, K. (2018). A comparative study of aggressive driving behavior recognition algorithms based on vehicle motion data. IEEE Access, 7, 8028-8038.
- Shen, Z., Li, S., Liu, Y., & Tang, X. (2023). Analysis of driving behavior in unprotected left turns for autonomous vehicles using ensemble deep clustering. IEEE Transactions on Intelligent Vehicles.
- Ashfaq, F., Ghoniem, R. M., Jhanjhi, N. Z., Khan, N. A., & Algarni, A. D. (2023). Using dual attention BiLSTM to predict vehicle lane changing maneuvers on highway dataset. Systems, 11(4), 196.
- Ma, X., & Andréasson, I. (2006). Estimation of driver reaction time from car-following data: Application in evaluation of general motor–type model. Transportation research record, 1965(1), 130-141.
- Garefalakis, T., Katrakazas, C., & Yannis, G. (2022). Data-driven estimation of a driving safety tolerance zone using imbalanced machine learning. Sensors, 22(14), 5309.
- Tao, X., Gao, D., Zhang, W., Liu, T., Du, B., Zhang, S., & Qin, Y. (2024). A multimodal physiological dataset for driving behaviour analysis. Scientific data, 11(1), 378.
- Mir, A., et al. (2024). A novel approach for the effective prediction of cardiovascular disease using applied artificial intelligence techniques. ESC Heart Failure. [CrossRef]
- Nawaz, A., et al. (2021). A comprehensive literature review of application of artificial intelligence in functional magnetic resonance imaging for disease diagnosis. Applied Artificial Intelligence, 1–19. [CrossRef]
- Ali, T. M., et al. (2022). A sequential machine learning-cum-attention mechanism for effective segmentation of brain tumor. Frontiers in Oncology, 12. [CrossRef]
- Rehman, A. U., et al. (2024). A machine learning-based framework for accurate and early diagnosis of liver diseases: A comprehensive study on feature selection, data imbalance, and algorithmic performance. International Journal of Intelligent Systems, 2024(1). [CrossRef]
- Muzafar, S., & Jhanjhi, N. Z. (2020). Success stories of ICT implementation in Saudi Arabia. In Employing Recent Technologies for Improved Digital Governance (pp. 151-163). IGI Global Scientific Publishing.
- Jabeen, T., Jabeen, I., Ashraf, H., Jhanjhi, N. Z., Yassine, A., & Hossain, M. S. (2023). An intelligent healthcare system using IoT in wireless sensor network. Sensors, 23(11), 5055.
- Shah, I. A., Jhanjhi, N. Z., & Laraib, A. (2023). Cybersecurity and blockchain usage in contemporary business. In Handbook of Research on Cybersecurity Issues and Challenges for Business and FinTech Applications (pp. 49-64). IGI Global.
- Hanif, M., Ashraf, H., Jalil, Z., Jhanjhi, N. Z., Humayun, M., Saeed, S., & Almuhaideb, A. M. (2022). AI-based wormhole attack detection techniques in wireless sensor networks. Electronics, 11(15), 2324.
- Shah, I. A., Jhanjhi, N. Z., Amsaad, F., & Razaque, A. (2022). The role of cutting-edge technologies in industry 4.0. In Cyber Security Applications for Industry 4.0 (pp. 97-109). Chapman and Hall/CRC.
- Humayun, M., Almufareh, M. F., & Jhanjhi, N. Z. (2022). Autonomous traffic system for emergency vehicles. Electronics, 11(4), 510.
- Muzammal, S. M., Murugesan, R. K., Jhanjhi, N. Z., & Jung, L. T. (2020, October). SMTrust: Proposing trust-based secure routing protocol for RPL attacks for IoT applications. In 2020 International Conference on Computational Intelligence (ICCI) (pp. 305-310). IEEE.
- Brohi, S. N., Jhanjhi, N. Z., Brohi, N. N., & Brohi, M. N. (2023). Key applications of state-of-the-art technologies to mitigate and eliminate COVID-19. Authorea Preprints.
- Khalil, M. I., Humayun, M., Jhanjhi, N. Z., Talib, M. N., & Tabbakh, T. A. (2021). Multi-class segmentation of organ at risk from abdominal ct images: A deep learning approach. In Intelligent Computing and Innovation on Data Science: Proceedings of ICTIDS 2021 (pp. 425-434). Singapore: Springer Nature Singapore.
- Humayun, M., Jhanjhi, N. Z., Niazi, M., Amsaad, F., & Masood, I. (2022). Securing drug distribution systems from tampering using blockchain. Electronics, 11(8), 1195.
- Alshudukhi, K. S. S., Ashfaq, F., Jhanjhi, N. Z., & Humayun, M. (2024). Blockchain-enabled federated learning for longitudinal emergency care. IEEE Access, 12, 137284-137294.
- Ashfaq, F., Jhanjhi, N. Z., Khan, N. A., Javaid, D., Masud, M., & Shorfuzzaman, M. (2025). Enhancing ECG Report Generation With Domain-Specific Tokenization for Improved Medical NLP Accuracy. IEEE Access.
- Faisal, A., Jhanjhi, N. Z., Ashraf, H., Ray, S. K., & Ashfaq, F. (2025). A Comprehensive Review of Machine Learning Models: Principles, Applications, and Optimal Model Selection. Authorea Preprints.
- Xie, J., Qin, Y., Zhang, Y., Chen, T., Wang, B., Zhang, Q., & Xia, Y. (2025). Towards human-like automated vehicles: review and perspectives on behavioural decision making and intelligent motion planning. Transportation Safety and Environment, 7(1), tdae005.
- Jothy, C. R., Judith, J. E., & Anand, A. J. (2025). Anomaly Detection in Traffic Systems. In Neural Networks and Graph Models for Traffic and Energy Systems (pp. 83-114). IGI Global Scientific Publishing.
- Pradeep Kumar, P., & Kant, K. (2025). TU-DAT: A Computer Vision Dataset on Road Traffic Anomalies. Sensors, 25(11), 3259.



| Study | Method/Model Used | Dataset/Features | Accuracy | Key Contribution |
| [1] | Random Forest, SVM, KNN | Sensor data from 1,000 drivers | 92% (RF) | Classified aggressive vs. cautious driving styles; RF outperformed others |
| [2] | CNN (Computer Vision) | 10,000 video samples; facial features like yawns, eyelid closure | 95% | Recognized fatigue in drivers using facial cues |
| [3] | Gradient Boosting, Random Forest | Telematics data from 2,500 vehicles | 89% | Predicted risky behaviors like speeding, harsh braking |
| [4] | Multimodal Deep Learning | 2,000 hours of vision-auditory-telemetry driving data | 94% | Improved behavioral classification using multi-source input |
| Ref | Year | ML Algorithms | Result |
| [5] | 2020 | Naïve Bayes, Decision Trees | Achieved 87% accuracy |
| [6] | 2019 | SVM | Achieved 91% accuracy |
| [7] | 2021 | Deep Learning (YOLO for object detection |
Achieved 94% accuracy |
| [8] | 2018 | ANN | Achieved 88% accuracy |
| [9] | 2020 | CNN-LSTM hybrid |
Achieved 93% accuracy |
| [10] | 2020 | Logistic Regression, SVM | Achieved 85% accuracy |
| [11] | 2019 | K-Means Clustering | Identified 3 clusters: cautious, normal and aggressive drivers |
| [12] | 2021 | RNN | Achieved 92% accuracy |
| [13] | 2020 | Random Forest | Achieved 88% accuracy |
| [14] | 2019 | Gradient Boosting | Achieved 90% accuracy |
| [15] | 2022 | Multimodal Deep Learning | Achieved 94% accuracy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
