Submitted:
03 October 2025
Posted:
06 October 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Artificial Intelligence in Otitis Media (OM) Diagnosis: Current Approaches and Limitations
Comparative Analysis of Diagnostic Performance
Clinical Integration and Future Direction
Conclusions
Author’s contribution
Data availability
Ethical approval and consent to participate
Clinical trial number
Consent for publication
Competing interests
Funding
Acknowledgements
References
- Danishyar A (2023) Acute Otitis Media. In: Acute Otitis Media, Updated 2023 Apr 15.
- Morris, P.S.; Leach, A.J. Acute and Chronic Otitis Media. Pediatr. Clin. North Am. 2009, 56, 1383–1399. [Google Scholar] [CrossRef]
- Gaddey, H.L.; Wright, M.T.; Nelson, T.N. Otitis Media: Rapid Evidence Review. 2019, 100, 350–356.
- Mukara, K.B.; Lilford, R.J.; Tucci, D.L.; Waiswa, P. Prevalence of Middle Ear Infections and Associated Risk Factors in Children under 5 Years in Gasabo District of Kigali City, Rwanda. Int. J. Pediatr. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Pichichero, M.E. Can Machine Learning and AI Replace Otoscopy for Diagnosis of Otitis Media? Pediatrics 2021, 147. [Google Scholar] [CrossRef]
- Legros, J.-M.; Hitoto, H.; Garnier, F.; Dagorne, C.; Parot-Schinkel, E.; Fanello, S. Clinical qualitative evaluation of the diagnosis of acute otitis media in general practice. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 23–30. [Google Scholar] [CrossRef]
- Wang, W.; Tamhane, A.; Santos, C.; Rzasa, J.R.; Clark, J.H.; Canares, T.L.; Unberath, M. Pediatric Otoscopy Video Screening With Shift Contrastive Anomaly Detection. Front. Digit. Heal. 2022, 3, 810427. [Google Scholar] [CrossRef]
- Cao, Z.; Chen, F.; Grais, E.M.; Yue, F.; Cai, Y.; Swanepoel, D.W.; Zhao, F. Machine Learning in Diagnosing Middle Ear Disorders Using Tympanic Membrane Images: A Meta-Analysis. Laryngoscope 2022, 133, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.-R.; Crossland, G.; Patel, H.; Wong, E.; Kong, K.; Gunasekera, H.; Richards, B.; Caffery, L.; Perry, C.; Sacks, R.; et al. An Artificial Intelligence Computer-vision Algorithm to Triage Otoscopic Images From Australian Aboriginal and Torres Strait Islander Children. Otol. Neurotol. 2022, 43, 481–488. [Google Scholar] [CrossRef]
- Habib, A.; Kajbafzadeh, M.; Hasan, Z.; Wong, E.; Gunasekera, H.; Perry, C.; Sacks, R.; Kumar, A.; Singh, N. Artificial intelligence to classify ear disease from otoscopy: A systematic review and meta-analysis. Clin. Otolaryngol. 2022, 47, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Sundgaard, J.V.; Harte, J.; Bray, P.; Laugesen, S.; Kamide, Y.; Tanaka, C.; Paulsen, R.R.; Christensen, A.N. Deep metric learning for otitis media classification. Med Image Anal. 2021, 71, 102034. [Google Scholar] [CrossRef] [PubMed]
- Afify, H.M.; Mohammed, K.K.; Hassanien, A.E. Insight into Automatic Image Diagnosis of Ear Conditions Based on Optimized Deep Learning Approach. Ann. Biomed. Eng. 2023, 52, 865–876. [Google Scholar] [CrossRef]
- Byun, H.; Yu, S.; Oh, J.; Bae, J.; Yoon, M.S.; Lee, S.H.; Chung, J.H.; Kim, T.H. An Assistive Role of a Machine Learning Network in Diagnosis of Middle Ear Diseases. J. Clin. Med. 2021, 10, 3198. [Google Scholar] [CrossRef]
- Byun, H.; Lee, S.H.; Kim, T.H.; Oh, J.; Chung, J.H. Feasibility of the Machine Learning Network to Diagnose Tympanic Membrane Lesions without Coding Experience. J. Pers. Med. 2022, 12, 1855. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, J.-G.; Chen, Y.; Liu, C.; Xiao, L.; Grais, E.M.; Zhao, F.; Lan, L.; Zeng, S.; Zeng, J.; et al. Investigating the use of a two-stage attention-aware convolutional neural network for the automated diagnosis of otitis media from tympanic membrane images: a prediction model development and validation study. BMJ Open 2021, 11, e041139. [Google Scholar] [CrossRef]
- Khan, M.A.; Kwon, S.; Choo, J.; Hong, S.M.; Kang, S.H.; Park, I.-H.; Kim, S.K.; Hong, S.J. Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks. Neural Networks 2020, 126, 384–394. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Q. Deep Learning Models for Predicting Hearing Thresholds Based on Swept-Tone Stimulus-Frequency Otoacoustic Emissions. Ear Hear. 2023, 45, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, K.K.; Hassanien, A.E.; Afify, H.M. Classification of Ear Imagery Database using Bayesian Optimization based on CNN-LSTM Architecture. J. Digit. Imaging 2022, 35, 947–961. [Google Scholar] [CrossRef] [PubMed]
- Rony, A.H.; Fatema, K.; Raiaan, M.A.K.; Hassan, M.; Azam, S.; Karim, A.; Jonkman, M.; Beissbarth, J.; De Boer, F.; Islam, S.M.S.; et al. Artificial Intelligence-Driven Advancements in Otitis Media Diagnosis: A Systematic Review. IEEE Access 2024, 12, 99282–99307. [Google Scholar] [CrossRef]
- Sandström, J.; Myburgh, H.; Laurent, C.; Swanepoel, D.W.; Lundberg, T. A Machine Learning Approach to Screen for Otitis Media Using Digital Otoscope Images Labelled by an Expert Panel. Diagnostics 2022, 12, 1318. [Google Scholar] [CrossRef]
- Taleb, A.; Leclerc, S.; Hussein, R.; Lalande, A.; Bozorg-Grayeli, A. Registration of preoperative temporal bone CT-scan to otoendoscopic video for augmented-reality based on convolutional neural networks. Eur. Arch. Oto-Rhino-Laryngology 2024, 281, 2921–2930. [Google Scholar] [CrossRef]
- Tseng, C.C.; Lim, V.; Jyung, R.W. Use of artificial intelligence for the diagnosis of cholesteatoma. Laryngoscope Investig. Otolaryngol. 2023, 8, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, K.; Goshtasbi, K.; Risbud, A.; Khosravi, P.; Pang, J.C.; Lin, H.W.; Djalilian, H.R.; Abouzari, M. A Web-Based Deep Learning Model for Automated Diagnosis of Otoscopic Images. Otol. Neurotol. 2021, 42, e1382–e1388. [Google Scholar] [CrossRef]
- V AJ, S J, Kovilpillai J JA, G A, K A (2024) Otoscopy Image Classification Using Embedded AI. In: 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS).
- Viscaino, M.; Maass, J.C.; Delano, P.H.; Torrente, M.; Stott, C.; Cheein, F.A. Computer-aided diagnosis of external and middle ear conditions: A machine learning approach. PLOS ONE 2020, 15, e0229226. [Google Scholar] [CrossRef] [PubMed]
- Viscaino, M.; Talamilla, M.; Maass, J.C.; Henríquez, P.; Délano, P.H.; Cheein, C.A.; Cheein, F.A. Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases. Diagnostics 2022, 12, 917. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Lin, Z.; Li, L.; Pan, H.; Chen, G.; Fu, Y.; Qiu, Q. Deep Learning for Classification of Pediatric Otitis Media. Laryngoscope 2020, 131, E2344–E2351. [Google Scholar] [CrossRef]
- Tran, T.-T.; Fang, T.-Y.; Pham, V.-T.; Lin, C.; Wang, P.-C.; Lo, M.-T. Development of an Automatic Diagnostic Algorithm for Pediatric Otitis Media. Otol. Neurotol. 2018, 39, 1060–1065. [Google Scholar] [CrossRef]
- Noda, M.; Yoshimura, H.; Okubo, T.; Koshu, R.; Uchiyama, Y.; Nomura, A.; Ito, M.; Takumi, Y. Feasibility of Multimodal Artificial Intelligence Using GPT-4 Vision for the Classification of Middle Ear Disease: Qualitative Study and Validation. JMIR AI 2024, 3, e58342. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Lin, T.; Shen, C.; Hsu, S.; Lin, S.; Kuo, Y.; Chen, M.; Yin, T.; Liu, C.; Lo, M.; et al. Algorithm-Driven Tele-otoscope for Remote Care for Patients With Otitis Media. Otolaryngol. Neck Surg. 2024, 170, 1590–1597. [Google Scholar] [CrossRef]
- Pichichero, M.E.; Poole, M.D. Assessing Diagnostic Accuracy and Tympanocentesis Skills in the Management of Otitis Media. Arch. Pediatr. Adolesc. Med. 2001, 155, 1137–1142. [Google Scholar] [CrossRef]
| Study Detail | AI Model | Dataset Size | Image Population | Sensitivity (%) | Specificity (%) | Accuracy (%) | AUC-ROC | Limitations |
| Tran et al., 2018 [26] | CNN-based AI | 214 | Pediatrics | 89.5 | 93.3 | 91.4 | 0.92 | Limited generalizability; potential bias; Small dataset; Lack of external validation; Limited scope of classification; dependence on image quality; no LMIC representation |
| Cai et al., 2021 [12] | Two-stage attention CNN | 6,066 | Mixed | NR | NR | 93.4 | 0.98 | Single- centre data collection; no LMIC representation; Lack of pediatric-specific preprocessing techniques |
| Afify et al., 2024 [9] | CNN architecture optimised through Bayesian hyperparameter | 880 | NR | 98.10 | 98.11 | 99.36 | NR | Homogeneous dataset; risk of overfitting; no external validation; Limited dataset size and diversity; single centre data collection; lack of external validation; dependence on image quality |
| Wang et al., 2022 [7] | SCAD (Self-supervised deep learning) | 100 | Pediatrics | 83.3 | 80.0 | 81.7 | 0.88 | Single centre data collection; Extremely small dateset; limited dataset diversity; potential overfitting; absence of external validation; dependence on image quality; no comparison to clinician performance. |
| [11] | DML | 1,336 | Pediatrics | NR | NR | 86.0 | NR | Limited dataset size; potential selection bias; lack of external validation; dependence on image quality; Single-rater labels (potential bias); no LMIC data; limited subtype differentiation |
| Tsutsumi et al., 2021 [21] | CNN (MobileNetV2-based modeL) | 400 | Mixed | 70.0 | 84.4 | 77.0 | 0.902 | Limited dataset size and diversity; use of publicly available images; lack of external validation; dependence on image quality; potential overfitting; poor multiclass accuracy (66%); lacks pediatric-specific analysis |
| Byun et al., 2021 [10] | CNN (ResNet) | 2272 | Mixed | NR | NR | 97.2 | NR | Single-centre data collection; Limited dataset diversity, potential overfitting; lack of external validation; dependence on image quality; dataset bias towards adult populations; no real-world clinical validation |
| Fang et al., 2024 [28] | CNN | 1,137 | Mixed | 80.0 | 96.0 | 94.0 | NR | Limited dataset diversity potential selection bias (higher proportion of normal images); single-centre data collection; absence of real-world clinical validation; limited pediatric data; Limited to telemedicine use cases |
| Habib et al., 2022 [27] | ML | 6,527 | Pediatrics | NA | NA | 91.1 | 0.997 | Focus on triage (normal/abnormal) rather than OM subtypes; dataset restricted to Australian indigenous children; no external validation |
| Khan et al., 2020 [14] | CNN | 2,484 | Mixed | 95.0 | NR | 87.0 | 0.99 | Lack pediatric-specific validation; no ethical consideration for data use; no external validation; limited generalizabilty; lack of real-world clinical testing |
| Mohammed et al., 2022 [16] | CNN-LSTM | 880 | Mixed | 100.0 | 100.0 | 100.0 | NR | Unrealistically high metrics suggesting overfitting; small, non-diverse dataset; no external validation; limited generalizabilty; lack of external validation; lack of pediatric-specific validation; no ethical consideration for data use |
| Noda et al., 2024 [29] | GPT-4 vision (AI model) | 190 | Mixed | NR | NR | 82.1 | NR | Very small dataset; lower accuracy for chronic OM subtypes; no pediatric-specific analysis; potential bias in training; absence of real-world clinical testing; dependence on quality images |
| Sandström et al., 2022 [18] | CNN | 273 | Mixed | 93.0 | 100.0 | 90.0 | NR | Limited dataset size; no external validation, potential overfitting; limited consideration of clinical variability; ethical consideration |
| Viscaino et al., 2020 [23] | SVM (ML) | 880 | Mixed | 87.8 | 95.9 | 93.9 | 1.00 | Traditional ML (non-deep learning) approach; lacks generalizability to complex OM subtypes; lack of external validation; limited dataset and diversity; dependence on image quality; clinical integration challenges |
| Viscaino et al., 2022 [24] | CNN (single green channel model) | 22,000 | Mixed | 85.0 | 95.0 | 92.0 | NR | Focus on colour-channel dependency; no pediatric subgroup analysis; unclear clinical utility; lack of external validation; single-centre data collection |
| Wu et al., 2021 [25] | CNN (Xception) | 12,203 | Pediatrics | NR | NR | 97.5 | NR | Limited diagnostic scope, single centre data collection; dependence on image quality; lack of external validation; lower performance on smartphone-captured images; no LMIC validation |
| Wu et al., 2021 [25] | CNN (MobileNet-V2) | 12,203 | Pediatrics | NR | NR | 95.7 | NR | Limited diagnostic scope, single centre data collection; dependence on image quality; lack of external validation; lower performance on smartphone-captured images; no LMIC validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
