Submitted:
15 September 2025
Posted:
16 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Fluid Retention
3. Autonomic Nervous System Abnormality

4. Impaired Glucose Tolerance
5. Bone and Mineral Disorders
6. Renal Anemia
![]() |
7. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonomini, V.; Orsoni, G.; Stefoni, S.; Vangelista, A. Hormonal Changes in Uremia. Clin Nephrol 1979, 11, 275–280. [Google Scholar]
- Maher, J.F. Endocrine Abnormalities in Patients Treated by Continuous Ambulatory Peritoneal Dialysis. Blood Purif 1990, 8, 69–75. [Google Scholar] [CrossRef]
- Kang, S.H.; Choi, E.W.; Park, J.W.; Cho, K.H.; Do, J.Y. Clinical Significance of the Edema Index in Incident Peritoneal Dialysis Patients. PLoS One 2016, 11, e0147070. [Google Scholar] [CrossRef]
- Guo, Q.; Lin, J.; Li, J.; Yi, C.; Mao, H.; Yang, X.; Yu, X. The Effect of Fluid Overload on Clinical Outcome in Southern Chinese Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. Perit Dial Int 2015, 35, 691–702. [Google Scholar] [CrossRef]
- Nakayama, M.; Miyazaki, M.; Honda, K.; Kasai, K.; Tomo, T.; Nakamoto, H.; Kawanishi, H. Encapsulating Peritoneal Sclerosis in the Era of a Multi-Disciplinary Approach Based on Biocompatible Solutions: The NEXT-PD Study. Perit Dial Int 2014, 34, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.D.; Craig, K.J.; Topley, N.; Von Ruhland, C.; Fallon, M.; Newman, G.R.; Mackenzie, R.K.; Williams, G.T. Morphologic Changes in the Peritoneal Membrane of Patients with Renal Disease. J Am Soc Nephrol 2002, 13, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Kooman, J.P.; Cnossen, N.; Konings, C.J.; van der Sande, F.M.; Leunissen, K.M. Is There a Competition between Urine Volume and Peritoneal Ultrafiltration in Peritoneal Dialysis Patients? Contrib Nephrol 2006, 150, 111–118. [Google Scholar] [CrossRef]
- Tian, N.; Guo, Q.; Zhou, Q.; Cao, P.; Hong, L.; Chen, M.; Yang, X.; Yu, X. The Impact of Fluid Overload and Variation on Residual Renal Function in Peritoneal Dialysis Patient. PLoS One 2016, 11, e0153115. [Google Scholar] [CrossRef]
- Stoiser, B.; Mörtl, D.; Hülsmann, M.; Berger, R.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Pacher, R. Copeptin, a Fragment of the Vasopressin Precursor, as a Novel Predictor of Outcome in Heart Failure. Eur J Clin Investigation 2006, 36, 771–778. [Google Scholar] [CrossRef]
- Ueno, H.; Yoshimura, M.; Tanaka, K.; Nishimura, H.; Nishimura, K.; Sonoda, S.; Motojima, Y.; Saito, R.; Maruyama, T.; Miyamoto, T.; et al. Up-Regulation of Hypothalamic Arginine Vasopressin by Peripherally Administered Furosemide in Transgenic Rats Expressing Arginine Vasopressin-Enhanced Green Fluorescent Protein. Journal of Neuroendocrinology 2018, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Kawasaki, M.; Suzuki, H.; Matsuura, T.; Motojima, Y.; Ohnishi, H.; Yamanaka, Y.; Yoshimura, M.; Maruyama, T.; Saito, R.; et al. Neuropathic Pain Up-Regulates Hypothalamo-Neurohypophysial and Hypothalamo-Spinal Oxytocinergic Pathways in Oxytocin-Monomeric Red Fluorescent Protein 1 Transgenic Rat. Neuroscience 2019, 406, 50–61. [Google Scholar] [CrossRef]
- Sanada, K.; Ueno, H.; Miyamoto, T.; Baba, K.; Tanaka, K.; Nishimura, H.; Nishimura, K.; Sonoda, S.; Yoshimura, M.; Maruyama, T.; et al. AVP-eGFP Was Significantly Upregulated by Hypovolemia in the Parvocellular Division of the Paraventricular Nucleus in the Transgenic Rats. Am J Physiol Regul Integr Comp Physiol 2022, 322, R161–R169. [Google Scholar] [CrossRef]
- Ueno, H.; Ueta, Y.; Nonaka, Y.; Shirouzu, T.; Ikeda, N.; Furuno, I.; Nakazono, K.; Hasegawa, E.; Shimizu, M.; Koga, J.; et al. Effects of Peritoneal Dialysis Fluids on Arginine Vasopressin Dynamics in Humans and Transgenic Rats. Perit Dial Int 2025, 8968608251347093. [Google Scholar] [CrossRef]
- Iwahori, T.; Esaki, M.; Hinoue, H.; Esaki, S.; Esaki, Y. Tolvaptan Increases Urine and Ultrafiltration Volume for Patients with Oliguria Undergoing Peritoneal Dialysis. Clin Exp Nephrol 2014, 18, 655–661. [Google Scholar] [CrossRef]
- Yu, Z.; Tan, B.K.; Dainty, S.; Mattey, D.L.; Davies, S.J. Hypoalbuminaemia, Systemic Albumin Leak and Endothelial Dysfunction in Peritoneal Dialysis Patients. Nephrol Dial Transplant 2012, 27, 4437–4445. [Google Scholar] [CrossRef] [PubMed]
- Zager, P.G.; Frey, H.J.; Gerdes, B.G. Plasma 18-Hydroxycorticosterone during Continuous Ambulatory Peritoneal Dialysis. J Lab Clin Med 1983, 102, 604–612. [Google Scholar] [PubMed]
- Zabetakis, P.M.; Kumar, D.N.; Gleim, G.W.; Gardenswartz, M.H.; Agrawal, M.; Robinson, A.G.; Michelis, M.F. Increased Levels of Plasma Renin, Aldosterone, Catecholamines and Vasopressin in Chronic Ambulatory Peritoneal Dialysis (CAPD) Patients. Clin Nephrol 1987, 28, 147–151. [Google Scholar]
- Ito, Y.; Mizuno, M.; Suzuki, Y.; Tamai, H.; Hiramatsu, T.; Ohashi, H.; Ito, I.; Kasuga, H.; Horie, M.; Maruyama, S.; et al. Long-Term Effects of Spironolactone in Peritoneal Dialysis Patients. J Am Soc Nephrol 2014, 25, 1094–1102. [Google Scholar] [CrossRef]
- Li, P.K.-T.; Chow, K.-M.; Wong, T.Y.-H.; Leung, C.-B.; Szeto, C.-C. Effects of an Angiotensin-Converting Enzyme Inhibitor on Residual Renal Function in Patients Receiving Peritoneal Dialysis. A Randomized, Controlled Study. Ann Intern Med 2003, 139, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Sanada, K.; Miyamoto, T.; Baba, K.; Tanaka, K.; Nishimura, H.; Nishimura, K.; Sonoda, S.; Yoshimura, M.; Maruyama, T.; et al. Oxytocin-Monomeric Red Fluorescent Protein 1 Synthesis in the Hypothalamus under Osmotic Challenge and Acute Hypovolemia in a Transgenic Rat Line. Physiol Rep 2020, 8, e14558. [Google Scholar] [CrossRef]
- Blackburn, R.E.; Samson, W.K.; Fulton, R.J.; Stricker, E.M.; Verbalis, J.G. Central Oxytocin Inhibition of Salt Appetite in Rats: Evidence for Differential Sensing of Plasma Sodium and Osmolality. Proceedings of the National Academy of Sciences of the United States of America 1993, 90, 10380–10384. [Google Scholar] [CrossRef]
- Forsling, M.L.; Judah, J.M.; Windle, R.J. The Effect of Vasopressin and Oxytocin on Glomerular Filtration Rate in the Conscious Rat: Contribution to the Natriuretic Response. The Journal of endocrinology 1994, 141, 59–67. [Google Scholar] [CrossRef]
- Gutkowska, J.; Jankowski, M.; Lambert, C.; Mukaddam-Daher, S.; Zingg, H.H.; McCann, S.M. Oxytocin Releases Atrial Natriuretic Peptide by Combining with Oxytocin Receptors in the Heart. Proceedings of the National Academy of Sciences of the United States of America 1997, 94, 11704–11709. [Google Scholar] [CrossRef]
- Walter, M.F.; Forsling, M.L.; Shirley, D.G. Contribution of Endogenous Oxytocin to Sodium Excretion in Anaesthetized, Surgically Operated Rats. The Journal of endocrinology 2000, 165, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Elabd, C.; Basillais, A.; Beaupied, H.; Breuil, V.; Wagner, N.; Scheideler, M.; Zaragosi, L.-E.; Massiéra, F.; Lemichez, E.; Trajanoski, Z.; et al. Oxytocin Controls Differentiation of Human Mesenchymal Stem Cells and Reverses Osteoporosis. Stem Cells 2008, 26, 2399–2407. [Google Scholar] [CrossRef]
- Joo, K.W.; Jeon, U.S.; Kim, G.-H.; Park, J.; Oh, Y.K.; Kim, Y.S.; Ahn, C.; Kim, S.; Kim, S.Y.; Lee, J.S.; et al. Antidiuretic Action of Oxytocin Is Associated with Increased Urinary Excretion of Aquaporin-2. Nephrol Dial Transplant 2004, 19, 2480–2486. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T. Heart Failure as a Disruption of Dynamic Circulatory Homeostasis Mediated by the Brain. Int Heart J 2016, 57, 145–149. [Google Scholar] [CrossRef]
- Denton, K.M.; Luff, S.E.; Shweta, A.; Anderson, W.P. DIFFERENTIAL NEURAL CONTROL OF GLOMERULAR ULTRAFILTRATION. Clin Exp Pharma Physio 2004, 31, 380–386. [Google Scholar] [CrossRef]
- Grassi, G.; Seravalle, G.; Ghiadoni, L.; Tripepi, G.; Bruno, R.M.; Mancia, G.; Zoccali, C. Sympathetic Nerve Traffic and Asymmetric Dimethylarginine in Chronic Kidney Disease. Clin J Am Soc Nephrol 2011, 6, 2620–2627. [Google Scholar] [CrossRef]
- Kaur, J.; Young, B.E.; Fadel, P.J. Sympathetic Overactivity in Chronic Kidney Disease: Consequences and Mechanisms. Int J Mol Sci 2017, 18, 1682. [Google Scholar] [CrossRef] [PubMed]
- Campese, V.M.; Kogosov, E.; Koss, M. Renal Afferent Denervation Prevents the Progression of Renal Disease in the Renal Ablation Model of Chronic Renal Failure in the Rat. Am J Kidney Dis 1995, 26, 861–865. [Google Scholar] [CrossRef]
- Oshima, N.; Onimaru, H.; Matsubara, H.; Uchida, T.; Watanabe, A.; Takechi, H.; Nishida, Y.; Kumagai, H. Uric Acid, Indoxyl Sulfate, and Methylguanidine Activate Bulbospinal Neurons in the RVLM via Their Specific Transporters and by Producing Oxidative Stress. Neuroscience 2015, 304, 133–145. [Google Scholar] [CrossRef]
- Owyang, C.; Miller, L.J.; DiMagno, E.P.; Brennan, L.A.; Go, V.L. Gastrointestinal Hormone Profile in Renal Insufficiency. Mayo Clin Proc 1979, 54, 769–773. [Google Scholar] [PubMed]
- Swanson, L.W.; Sawchenko, P.E. Paraventricular Nucleus: A Site for the Integration of Neuroendocrine and Autonomic Mechanisms. Neuroendocrinology 1980, 31, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Bourque, C.W. Central Mechanisms of Osmosensation and Systemic Osmoregulation. Nature Reviews Neuroscience 2008, 9, 519–531. [Google Scholar] [CrossRef]
- Toney, G.M.; Stocker, S.D. Hyperosmotic Activation of CNS Sympathetic Drive: Implications for Cardiovascular Disease. The Journal of physiology 2010, 588, 3375–3384. [Google Scholar] [CrossRef]
- Wijewickrama, P.; Williams, J.; Bain, S.; Dasgupta, I.; Chowdhury, T.A.; Wahba, M.; Frankel, A.H.; Lambie, M.; Karalliedde, J.; Bain, S.; et al. Narrative Review of Glycemic Management in People With Diabetes on Peritoneal Dialysis. Kidney International Reports 2023, 8, 700–714. [Google Scholar] [CrossRef]
- Bailey, J.L.; Zheng, B.; Hu, Z.; Price, S.R.; Mitch, W.E. Chronic Kidney Disease Causes Defects in Signaling through the Insulin Receptor Substrate/Phosphatidylinositol 3-Kinase/Akt Pathway: Implications for Muscle Atrophy. J Am Soc Nephrol 2006, 17, 1388–1394. [Google Scholar] [CrossRef]
- Rivara, M.B.; Mehrotra, R. New-Onset Diabetes in Peritoneal Dialysis Patients - Which Predictors Really Matter? Perit Dial Int 2016, 36, 243–246. [Google Scholar] [CrossRef]
- Szeto, C.-C.; Chow, K.-M.; Kwan, B.C.-H.; Chung, K.-Y.; Leung, C.-B.; Li, P.K.-T. New-Onset Hyperglycemia in Nondiabetic Chinese Patients Started on Peritoneal Dialysis. Am J Kidney Dis 2007, 49, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Gu, Y.-Y.; Cui, C.-J.; Zhou, C.-C.; Wang, X.-D.; Ruan, M.-N.; Huang, L.-X.; Chen, S.-X.; Yang, B.; Chen, X.-J.; et al. New-Onset Glucose Disorders in Peritoneal Dialysis Patients: A Meta-Analysis and Systematic Review. Nephrol Dial Transplant 2020, 35, 1412–1419. [Google Scholar] [CrossRef]
- Fortes, P.C.; de Moraes, T.P.; Mendes, J.G.; Stinghen, A.E.; Ribeiro, S.C.; Pecoits-Filho, R. Insulin Resistance and Glucose Homeostasis in Peritoneal Dialysis. Perit Dial Int 2009, 29 Suppl 2, S145–148. [Google Scholar] [CrossRef]
- Meuwese, C.L.; Snaedal, S.; Halbesma, N.; Stenvinkel, P.; Dekker, F.W.; Qureshi, A.R.; Barany, P.; Heimburger, O.; Lindholm, B.; Krediet, R.T.; et al. Trimestral Variations of C-Reactive Protein, Interleukin-6 and Tumour Necrosis Factor-α Are Similarly Associated with Survival in Haemodialysis Patients. Nephrol Dial Transplant 2011, 26, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Du, J.; Hu, Z.; Han, G.; Delafontaine, P.; Garcia, G.; Mitch, W.E. IL-6 and Serum Amyloid A Synergy Mediates Angiotensin II-Induced Muscle Wasting. J Am Soc Nephrol 2009, 20, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Koppe, L.; Pillon, N.J.; Vella, R.E.; Croze, M.L.; Pelletier, C.C.; Chambert, S.; Massy, Z.; Glorieux, G.; Vanholder, R.; Dugenet, Y.; et al. P-Cresyl Sulfate Promotes Insulin Resistance Associated with CKD. J Am Soc Nephrol 2013, 24, 88–99. [Google Scholar] [CrossRef]
- Cordeiro, A.C.; Carrero, J.J.; Abensur, H.; Lindholm, B.; Stenvinkel, P. Systemic and Local Inflammation in Peritoneal Dialysis: Mechanisms, Biomarkers and Effects on Outcome. Contrib Nephrol 2009, 163, 132–139. [Google Scholar] [CrossRef]
- Nascimento, M.M.; Suliman, M.E.; Silva, M.; Chinaglia, T.; Marchioro, J.; Hayashi, S.Y.; Riella, M.C.; Lindholm, B.; Anderstam, B. Effect of Oral N-Acetylcysteine Treatment on Plasma Inflammatory and Oxidative Stress Markers in Peritoneal Dialysis Patients: A Placebo-Controlled Study. Perit Dial Int 2010, 30, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Blaine, E.; Tumlinson, R.; Colvin, M.; Haynes, T.; Whitley, H.P. Systematic Literature Review of Insulin Dose Adjustments When Initiating Hemodialysis or Peritoneal Dialysis. Pharmacotherapy 2022, 42, 177–187. [Google Scholar] [CrossRef]
- Zager, P.G.; Spalding, C.T.; Frey, H.J.; Brittenham, M.C. Low Dose Adrenocorticotropin Infusion in Continuous Ambulatory Peritoneal Dialysis Patients. J Clin Endocrinol Metab 1985, 61, 1205–1210. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Kumari, P.; Wang, L.; Hidema, S.; Nishimori, K.; Yada, T. Relay of Peripheral Oxytocin to Central Oxytocin Neurons via Vagal Afferents for Regulating Feeding. Biochem Biophys Res Commun 2019, 519, 553–558. [Google Scholar] [CrossRef]
- Heaton, A.; Johnston, D.G.; Haigh, J.W.; Ward, M.K.; Alberti, K.G.; Kerr, D.N. Twenty-Four Hour Hormonal and Metabolic Profiles in Uraemic Patients before and during Treatment with Continuous Ambulatory Peritoneal Dialysis. Clin Sci (Lond) 1985, 69, 449–457. [Google Scholar] [CrossRef]
- Yamada, S.; Nakano, T. Role of Chronic Kidney Disease (CKD)-Mineral and Bone Disorder (MBD) in the Pathogenesis of Cardiovascular Disease in CKD. J Atheroscler Thromb 2023, 30, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl (2011) 2017, 7, 1–59. [CrossRef]
- Noordzij, M.; Korevaar, J.C.; Bos, W.J.; Boeschoten, E.W.; Dekker, F.W.; Bossuyt, P.M.; Krediet, R.T. Mineral Metabolism and Cardiovascular Morbidity and Mortality Risk: Peritoneal Dialysis Patients Compared with Haemodialysis Patients. Nephrol Dial Transplant 2006, 21, 2513–2520. [Google Scholar] [CrossRef]
- Adragao, T.; Branco, P.; Birne, R.; Curto, J.D.; de Almeida, E.; Prata, M.M.; Pais, M.J. Bone Mineral Density, Vascular Calcifications, and Arterial Stiffness in Peritoneal Dialysis Patients. Perit Dial Int 2008, 28, 668–672. [Google Scholar] [CrossRef]
- Delmez, J.A.; Slatopolsky, E.; Martin, K.J.; Gearing, B.N.; Harter, H.R. Minerals, Vitamin D, and Parathyroid Hormone in Continuous Ambulatory Peritoneal Dialysis. Kidney Int 1982, 21, 862–867. [Google Scholar] [CrossRef]
- Rahman, R.; Heaton, A.; Goodship, T.H.J.; Stuart, R.; Rodger, C.; Tapson Leslie, J.S.; Ellis, S.H.A.; Wilkinson, R.; Ward, M.K. Renal Osteodystrophy in Patients on Continuous Ambulatory Peritoneal Dialysis: A Five Year Study. Perit Dial Int 1987, 7, 20–26. [Google Scholar] [CrossRef]
- Loschiavo, C.; Fabris, A.; Adami, S.; Tomelleri, L.; Tessitore, N.; Valvo, E.; Lupo, A.; Oldrizzi, L.; Rugiu, C.; Gammaro, L.; et al. Effects of Continuous Ambulatory Peritoneal Dialysis (CAPD) on Renal Osteodystrophy. Perit Dial Int 1985, 5, 53–55. [Google Scholar] [CrossRef]
- Isakova, T.; Xie, H.; Barchi-Chung, A.; Vargas, G.; Sowden, N.; Houston, J.; Wahl, P.; Lundquist, A.; Epstein, M.; Smith, K.; et al. Fibroblast Growth Factor 23 in Patients Undergoing Peritoneal Dialysis. Clin J Am Soc Nephrol 2011, 6, 2688–2695. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Liang, Y.; Cheng, L.; Wang, Y.; Wang, T.; Han, Q.; Zhang, A. Hemodialysis Is Associated with Higher Serum FGF23 Level When Compared with Peritoneal Dialysis. Int Urol Nephrol 2017, 49, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.E.; Miguel, J.L.; Gómez, P.; Selgas, R.; Salinas, M.; Gentil, M.; Mateos, F.; Montero, J.L.; Sánchez Sicilia, L. Plasma Calcitonin Concentration in Patients Treated with Chronic Dialysis: Differences between Hemodialysis and CAPD. Clin Nephrol 1983, 19, 250–253. [Google Scholar] [PubMed]
- Elabd, C.; Cousin, W.; Upadhyayula, P.; Chen, R.Y.; Chooljian, M.S.; Li, J.; Kung, S.; Jiang, K.P.; Conboy, I.M. Oxytocin Is an Age-Specific Circulating Hormone That Is Necessary for Muscle Maintenance and Regeneration. Nat Commun 2014, 5, 4082. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, L.C.; Gori, F.; Riggs, B.L.; Lacey, D.L.; Dunstan, C.R.; Spelsberg, T.C.; Khosla, S. Stimulation of Osteoprotegerin Ligand and Inhibition of Osteoprotegerin Production by Glucocorticoids in Human Osteoblastic Lineage Cells: Potential Paracrine Mechanisms of Glucocorticoid-Induced Osteoporosis. Endocrinology 1999, 140, 4382–4389. [Google Scholar] [CrossRef]
- Shuto, T.; Kukita, T.; Hirata, M.; Jimi, E.; Koga, T. Dexamethasone Stimulates Osteoclast-like Cell Formation by Inhibiting Granulocyte-Macrophage Colony-Stimulating Factor Production in Mouse Bone Marrow Cultures. Endocrinology 1994, 134, 1121–1126. [Google Scholar] [CrossRef]
- Li, P.K.T.; Choy, A.S.M.; Bavanandan, S.; Chen, W.; Foo, M.; Kanjanabuch, T.; Kim, Y.-L.; Nakayama, M.; Yu, X. Anemia Management in Peritoneal Dialysis: Perspectives From the Asia Pacific Region. Kidney Med 2021, 3, 405–411. [Google Scholar] [CrossRef]
- De Paepe, M.B.J.; Schelstraete, K.H.G.; Ringoir, S.M.G.; Lameire, N.H. Influence of Continuous Ambulatory Peritoneal Dialysis on the Anemia of Endstage Renal Disease. Kidney International 1983, 23, 744–748. [Google Scholar] [CrossRef]
- Summerfield, G.P.; Gyde, O.H.; Forbes, A.M.; Goldsmith, H.J.; Bellingham, A.J. Haemoglobin Concentration and Serum Erythropoietin in Renal Dialysis and Transplant Patients. Scand J Haematol 1983, 30, 389–400. [Google Scholar] [CrossRef]
- Matsuo, N.; Yokoyama, K.; Maruyama, Y.; Ueda, Y.; Yoshida, H.; Tanno, Y.; Yamamoto, R.; Terawaki, H.; Ikeda, M.; Hanaoka, K.; et al. Clinical Impact of a Combined Therapy of Peritoneal Dialysis and Hemodialysis. Clin Nephrol 2010, 74, 209–216. [Google Scholar] [CrossRef]
- Meytes, D.; Bogin, E.; Ma, A.; Dukes, P.P.; Massry, S.G. Effect of Parathyroid Hormone on Erythropoiesis. J Clin Invest 1981, 67, 1263–1269. [Google Scholar] [CrossRef]
- Rao, D.S.; Shih, M.S.; Mohini, R. Effect of Serum Parathyroid Hormone and Bone Marrow Fibrosis on the Response to Erythropoietin in Uremia. N Engl J Med 1993, 328, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Trunzo, J.A.; McHenry, C.R.; Schulak, J.A.; Wilhelm, S.M. Effect of Parathyroidectomy on Anemia and Erythropoietin Dosing in End-Stage Renal Disease Patients with Hyperparathyroidism. Surgery 2008, 144, 915–918. [Google Scholar] [CrossRef]
- David, V.; Martin, A.; Isakova, T.; Spaulding, C.; Qi, L.; Ramirez, V.; Zumbrennen-Bullough, K.B.; Sun, C.C.; Lin, H.Y.; Babitt, J.L.; et al. Inflammation and Functional Iron Deficiency Regulate Fibroblast Growth Factor 23 Production. Kidney Int 2016, 89, 135–146. [Google Scholar] [CrossRef]
- Coe, L.M.; Madathil, S.V.; Casu, C.; Lanske, B.; Rivella, S.; Sitara, D. FGF-23 Is a Negative Regulator of Prenatal and Postnatal Erythropoiesis. J Biol Chem 2014, 289, 9795–9810. [Google Scholar] [CrossRef]
- Agoro, R.; Montagna, A.; Goetz, R.; Aligbe, O.; Singh, G.; Coe, L.M.; Mohammadi, M.; Rivella, S.; Sitara, D. Inhibition of Fibroblast Growth Factor 23 (FGF23) Signaling Rescues Renal Anemia. FASEB J 2018, 32, 3752–3764. [Google Scholar] [CrossRef] [PubMed]
- Czaya, B.; Faul, C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int J Mol Sci 2019, 20, 4195. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.; Németh, K.; Krepuska, M.; Myneni, V.D.; Maric, D.; Tisdale, J.F.; Hsieh, M.M.; Uchida, N.; Lee, H.-J.; Nemeth, M.J.; et al. Vasopressin Stimulates the Proliferation and Differentiation of Red Blood Cell Precursors and Improves Recovery from Anemia. Sci Transl Med 2017, 9, eaao1632. [Google Scholar] [CrossRef] [PubMed]
- Schill, F.; Engström, G.; Melander, O.; Timpka, S.; Enhörning, S. The Possible Role of the Vasopressin System in Hematopoiesis. Sci. [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

