Submitted:
06 August 2025
Posted:
07 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Background
3. Main Text
3.1. Composition and Functions of Gut Microbiota
3.1.1. Definition and Composition
3.1.2. Physiological Functions
3.1.3. Dysbiosis
3.1.4. Factors Influencing the Gut Microbiota
3.1.5. Study Methods
3.2. Mechanisms by Which Microbiota Influences Atherosclerosis
3.2.1. Lipopolysaccharides (LPS)
3.2.2. Trimethylamine N-Oxide (TMAO)
3.2.3. Short-Chain Fatty Acids (SCFAs)
3.2.4. Secondary Bile Acids
3.3. Therapeutic Interventions Targeting Microbiota
3.3.1. Diet
3.3.2. Prebiotics
3.3.3. Probiotics
3.3.4. Small Molecule Compounds
3.3.5. Phenolic Compounds
3.3.6. Targeting TMAO
3.3.7. Fecal Microbiota Transplantation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| - A. muciniphila | Akkermansia muciniphila |
| - ABCA1 | ATP-binding cassette transporter A1 |
| - ABCG2 | ATP-binding cassette super-family G member 2 |
| - ACC | Acetyl-CoA carboxylase |
| - Akt | Protein kinase B (also part of PI3K-Akt pathway) |
| - AMPK | AMP-activated protein kinase |
| - ApoA-I | Apolipoprotein A-I |
| - ApoE | Apolipoprotein E |
| - AS | Atherosclerosis |
| - ASBT | Apical sodium-dependent bile acid transporter |
| - ASCVD | Atherosclerotic cardiovascular disease |
| - ATG16L1 | Autophagy related 16 like 1 |
| - B. uniformis | Bacteroides uniformis |
| - bai | Bile acid-inducible (operon) |
| - BARs | Bile acid receptors |
| - BAs | Bile acids |
| - B-GOS | Bifidobacterial-galacto-oligosaccharides |
| - BSH | Bile salt hydrolase |
| - CA | Cholic acid |
| - CAR | Constitutive androstane receptor |
| - CD14 | Cluster of differentiation 14 |
| - CD204 | Cluster of differentiation 204 |
| - CD36 | Cluster of differentiation 36 |
| - CDCA | Chenodeoxycholic acid |
| - COX-2 | Cyclooxygenase-2 |
| - COVID-19 | Coronavirus disease 2019 |
| - CRC | Colorectal cancer |
| - CVD | Cardiovascular disease |
| - CYP27A1 | Cytochrome P450 family 27 subfamily A member 1 |
| - CYP7A1 | Cytochrome P450 family 7 subfamily A member 1 |
| - CYP7B1 | Cytochrome P450 family 7 subfamily B member 1 |
| - DCA | Deoxycholic acid |
| - DCs | Dendritic cells |
| - DIP | Dictophora indusiata polysaccharide |
| - DMB | 3,3-dimethyl-1-butanol |
| - E. coli | Escherichia coli |
| - EDH | Endothelium-derived hyperpolarization |
| - EGFR | Epidermal growth factor receptor |
| - ENS | Enteric nervous system |
| - eNOS | Endothelial nitric oxide synthase |
| - ERK1/2 | Extracellular signal-regulated kinase 1/2 |
| - F. prausnitzii | Faecalibacterium prausnitzii |
| - F/B | Firmicutes/Bacteroidetes (ratio) |
| - FASN | Fatty acid synthase |
| - FFAR2 | Free fatty acid receptor 2 |
| - FFAR3 | Free fatty acid receptor 3 |
| - FMC | Fluoromethylcholine |
| - FMO3 | Flavin monooxygenase 3 |
| - FMT | Fecal microbiota transplantation |
| - FOXP3 | Forkhead box P3 |
| - FXR | Farnesoid X receptor |
| - G6Pase | Glucose-6-phosphatase |
| - GABA | Gamma-aminobutyric acid |
| - GF | Germ-free |
| - GLP-1 | Glucagon-like peptide 1 |
| - GPCR | G-protein coupled receptor |
| - GPR41 | G-protein coupled receptor 41 |
| - H. pylori | Helicobacter pylori |
| - HDAC | Histone deacetylase |
| - HDACs | Histone deacetylases |
| - HDL | High-density lipoprotein |
| - HFD | High-fat diet |
| - HGM | Human gut microbiome |
| - HMG-CoA | 3-hydroxy-3-methylglutaryl-coenzyme A |
| - HSDH | Hydroxysteroid dehydrogenase |
| - I3C | Indole-3-carbinol |
| - IBD | Inflammatory bowel disease |
| - IBS | Irritable bowel syndrome |
| - ICAM-1 | Intercellular adhesion molecule 1 |
| - IEC | Intestinal epithelial cell |
| - IECs | Intestinal epithelial cells |
| - IFIT1 | Interferon-induced protein with tetratricopeptide repeats 1 |
| - IgA | Immunoglobulin A |
| - IgG | Immunoglobulin G |
| - IL-1 | Interleukin-1 |
| - IL-1β | Interleukin-1 beta |
| - IL-6 | Interleukin-6 |
| - IL-8 | Interleukin-8 |
| - IMC | Iodomethylcholine |
| - isoalloLCA | Isoallolithocholic acid |
| - JNK | c-Jun N-terminal kinase |
| - LAL | Limulus Amoebocyte Lysate |
| - LBP | Lipopolysaccharide-binding protein |
| - LCA | Lithocholic acid |
| - LDL | Low-density lipoprotein |
| - LDLr | Low-density lipoprotein receptor |
| - LL-37 | Cathelicidin antimicrobial peptide |
| - LOX-1 | Lectin-like oxidized low-density lipoprotein receptor-1 |
| - LPS | Lipopolysaccharides |
| - M1 | Macrophage type 1 |
| - M2 | Macrophage type 2 |
| - MAPK | Mitogen-activated protein kinase |
| - MCP-1 | Monocyte chemoattractant protein 1 |
| - MCT1 | Monocarboxylate transporter 1 |
| - MCT4 | Monocarboxylate transporter 4 |
| - MD-2 | Myeloid differentiation factor 2 |
| - MDA | Malondialdehyde |
| - MRSA | Methicillin-resistant Staphylococcus aureus |
| - mtROS | Mitochondrial reactive oxygen species |
| - MUC2 | Mucin 2 |
| - MyD88 | Myeloid differentiation primary response 88 |
| - NADPH | Nicotinamide adenine dinucleotide phosphate |
| - NEU1 | Neuraminidase 1 |
| - NET | Neutrophil extracellular trap |
| - NF-κB | Nuclear factor kappa B |
| - NK | Natural killer |
| - NKT | Natural killer T |
| - NLRP3 | NLR family pyrin domain containing 3 |
| - NO | Nitric oxide |
| - NOD1 | Nucleotide-binding oligomerization domain 1 |
| - NOD1/2 | Nucleotide-binding oligomerization domain 1/2 |
| - NOD2 | Nucleotide-binding oligomerization domain 2 |
| - NPC1L1 | Niemann-Pick C1-like 1 |
| - NR4A1 | Nuclear receptor subfamily 4 group A member 1 |
| - NR4A2 | Nuclear receptor subfamily 4 group A member 2 |
| - Nrf2 | Nuclear factor erythroid 2-related factor 2 |
| - Olfr78 | Olfactory receptor 78 |
| - OSTα/OSTβ | Organic solute transporter alpha/beta |
| - oxLDL | Oxidized low-density lipoprotein |
| - P. gingivalis | Porphyromonas gingivalis |
| - PAF | Platelet-activating factor |
| - PAMPs | Pathogen-associated molecular patterns |
| - PD-L1 | Programmed death-ligand 1 |
| - PEPCK | Phosphoenolpyruvate carboxykina |
References
- Madaudo C, Coppola G, Parlati ALM, Corrado E. Discovering Inflammation in Atherosclerosis: Insights from Pathogenic Pathways to Clinical Practice. Int J Mol Sci. 2024 Jan;25(11):6016.
- Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The Global Burden of Cardiovascular Diseases and Risk. JACC. 2022 Dec 20;80(25):2361–71.
- Markin AM, Sobenin IA, Grechko AV, Zhang D, Orekhov AN. Cellular Mechanisms of Human Atherogenesis: Focus on Chronification of Inflammation and Mitochondrial Mutations. Front Pharmacol. 2020;11:642.
- Parthasarathy, S. Atherogenesis. Rijeka (Croatia): InTech; 2011.
- Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011 May;473(7347):317–25.
- Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018 Jun 21;378(25):e34.
- Mozaffarian D, Micha R, Wallace S. Effects on Coronary Heart Disease of Increasing Polyunsaturated Fat in Place of Saturated Fat: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLOS Med. 2010 Mar 23;7(3):e1000252.
- Wei T, Liu J, Zhang D, Wang X, Li G, Ma R, et al. The relationship between nutrition and atherosclerosis. Front Bioeng Biotechnol. 2021;9:635504. [CrossRef]
- Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and Atherosclerosis. Arch Med Res. 2015 Jul 1;46(5):408–26.
- Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017 May 16;474(11):1823–36.
- Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci. 2010 Jun 29;107(26):11971–5.
- Shen X, Li L, Sun Z, Zang G, Zhang L, Shao C, et al. Gut microbiota and atherosclerosis—focusing on the plaque stability. Front Cardiovasc Med. 2021;8:668532. [CrossRef]
- Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020 Jun;30(6):492–506.
- Vich Vila A, Imhann F, Collij V, Jankipersadsing SA, Gurry T, Mujagic Z, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med. 2018 Dec 19;10(472):eaap8914.
- Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. The Lancet. 2019 Aug 3;394(10196):420–31.
- Hrncir, T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms. 2022 Mar;10(3):578.
- Tang WHW, Kitai T, Hazen SL. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017 Mar 31;120(7):1183–96.
- Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci. 2004 Jul 20;101(29):10679–84.
- Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol. 2010 Aug 1;300(6):371–9.
- Ma J, Li H. The role of gut microbiota in atherosclerosis and hypertension. Front Pharmacol. 2018;9:1082. [CrossRef]
- De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010 Aug 17;107(33):14691–6.
- Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci. 2013 May 28;110(22):9066–71.
- Rinninella E, Tohumcu E, Raoul P, Fiorani M, Cintoni M, Mele MC, et al. The role of diet in shaping human gut microbiota. Best Pract Res Clin Gastroenterol. 2023 Feb 1;62–63:101828.
- Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016 Jul 7;535(7610):56–64.
- Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018 Feb 1;57(1):1–24.
- Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012 Oct;9(10):577–89.
- Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019 Jun 13;7(1):91.
- Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 Mar;464(7285):59–65.
- Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-Gut Microbiota Metabolic Interactions. Science. 2012 Jun 8;336(6086):1262–7.
- Martinez JE, Kahana DD, Ghuman S, Wilson HP, Wilson J, Kim SCJ, et al. Unhealthy lifestyle and gut dysbiosis: a better understanding of the effects of poor diet and nicotine on the intestinal microbiome. Front Endocrinol. 2021;12:667066. [CrossRef]
- Belkaid Y, Hand TW. Role of the Microbiota in Immunity and Inflammation. Cell. 2014 Mar 27;157(1):121–41.
- Koh A, Vadder FD, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016 Jun 2;165(6):1332–45.
- How colonization by microbiota in early life shapes the immune system | Science [Internet]. [cited 2025 Jul 1]. Available from: https://www.science.org/doi/10.1126/science.aad9378.
- Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends Immunol. 2018 Sep 1;39(9):677–96.
- Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017 Oct 2;5(4):e1373208.
- Hooks KB, O’Malley MA. Dysbiosis and Its Discontents. mBio. 2017 Oct 10;8(5):10.1128/mbio.01492-17.
- Olesen SW, Alm EJ. Dysbiosis is not an answer. Nat Microbiol. 2016 Nov 25;1:16228.
- Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016 Apr 27;8(1):51.
- DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis. 2016 May;22(5):1137–50.
- Gut Microbiota and Cardiovascular Disease | Circulation Research [Internet]. [cited 2025 Jul 1]. Available from: https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.120.316242.
- Goedeke L, Aranda JF, Fernández-Hernando C. microRNA regulation of lipoprotein metabolism. Curr Opin Lipidol. 2014 Aug;25(4):282.
- Lima T, Costa V, Nunes C, da Silva GJ, Domingues S. From Dysbiosis to Cardiovascular Disease: The Impact of Gut Microbiota on Atherosclerosis and Emerging Therapies. Appl Sci. 2025 Jan;15(13):7084.
- Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012 Aug 1;70(suppl_1):S38–44.
- Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016 Jul 7;535(7610):65–74.
- Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory Bowel Disease. Cell. 2014 Aug 28;158(5):1000–10.
- Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018 Mar;555(7695):210–5.
- Gotschlich EC, Colbert RA, Gill T. Methods in microbiome research: Past, present, and future. Best Pract Res Clin Rheumatol. 2019 Dec 1;33(6):101498.
- Jonsson AL, Bäckhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017 Feb;14(2):79–87.
- Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013 May;19(5):576–85.
- Raetz CRH, Whitfield C. Lipopolysaccharide Endotoxins. Annu Rev Biochem. 2002 Jul 1;71(Volume 71, 2002):635–700.
- Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007 Jul;56(7):1761–72.
- Silhavy TJ, Kahne D, Walker S. The Bacterial Cell Envelope. Cold Spring Harb Perspect Biol. 2010 May 1;2(5):a000414.
- Livingston DBH, Sweet A, Chowdary M, Samuel Demissie M, Rodrigue A, Pillagawa Gedara K, et al. Diet alters the effects of lipopolysaccharide on intestinal health and cecal microbiota composition in C57Bl/6 male mice. J Nutr Biochem. 2025 Oct 1;144:109951.
- Jong MAWP de, Geijtenbeek TBH. Langerhans cells in innate defense against pathogens. Trends Immunol. 2010 Dec 1;31(12):452–9.
- Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV, et al. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid Med Cell Longev. 2020;2020(1):5245308.
- Levine DM, Parker TS, Donnelly TM, Walsh A, Rubin AL. In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci. 1993 Dec 15;90(24):12040–4.
- Gorabi AM, Kiaie N, Khosrojerdi A, Jamialahmadi T, Al-Rasadi K, Johnston TP, et al. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med. 2022 Nov 1;32(8):525–33.
- Head T, Daunert S, Goldschmidt-Clermont PJ. The Aging Risk and Atherosclerosis: A Fresh Look at Arterial Homeostasis. Front Genet. 2017 Dec 14;8:216.
- Campbell LA, Rosenfeld ME. Infection and Atherosclerosis Development. Arch Med Res. 2015 Jul 1;46(5):339–50.
- Suzuki K, Susaki EA, Nagaoka I. Lipopolysaccharides and Cellular Senescence: Involvement in Atherosclerosis. Int J Mol Sci. 2022 Jan;23(19):11148.
- Sun HJ, Wu ZY, Nie XW, Bian JS. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front Pharmacol. 2020 Jan 21;10:1568.
- Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease – a 30th anniversary update. Acta Physiol. 2017;219(1):22–96.
- Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease | Nature [Internet]. [cited 2025 Jul 1]. Available from: https://www.nature.com/articles/nature09922.
- Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N Engl J Med. 2013 Apr 25;368(17):1575–84.
- Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr;472(7341):57–63.
- Li T, Chen Y, Gua C, Li X. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress. Front Physiol. 2017;8:350. [CrossRef]
- Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, et al. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J Am Heart Assoc. 2016 Feb 23;5(2):e002767.
- Shanmugham M, Bellanger S, Leo CH. Gut-Derived Metabolite, Trimethylamine-N-oxide (TMAO) in Cardio-Metabolic Diseases: Detection, Mechanism, and Potential Therapeutics. Pharmaceuticals. 2023 Apr;16(4):504.
- Chen ML, Zhu XH, Ran L, Lang HD, Yi L, Mi MT. Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway. J Am Heart Assoc. 2017 Sep 4;6(9):e006347.
- Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell. 2015 Dec 17;163(7):1585–95.
- Oktaviono YH, Dyah Lamara A, Saputra PBT, Arnindita JN, Pasahari D, Saputra ME, et al. The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review. Biomol Biomed. 2023 Nov 3;23(6):936–48.
- Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. [CrossRef]
- Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016 May 3;7(3):189–200.
- Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients. 2023 Jan;15(9):2211.
- Ohira H, Tsutsui W, Fujioka Y. Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis? J Atheroscler Thromb. 2017 Jul 1;24(7):660–72.
- Butts CA, Paturi G, Blatchford P, Bentley-Hewitt KL, Hedderley DI, Martell S, et al. Microbiota Composition of Breast Milk from Women of Different Ethnicity from the Manawatu—Wanganui Region of New Zealand. Nutrients. 2020 Jun;12(6):1756.
- Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients. 2011 Oct;3(10):858–76.
- Lee NK, Kim H, Chang JW, Jang H, Kim H, Yang J, et al. Exploring the Potential of Mesenchymal Stem Cell-Based Therapy in Mouse Models of Vascular Cognitive Impairment. Int J Mol Sci. 2020 Jan;21(15):5524.
- Wang Y, Dou W, Qian X, Chen H, Zhang Y, Yang L, et al. Advancements in the study of short-chain fatty acids and their therapeutic effects on atherosclerosis. Life Sci. 2025 May 15;369:123528.
- An C, Chon H, Ku W, Eom S, Seok M, Kim S, et al. Bile Acids: Major Regulator of the Gut Microbiome. Microorganisms. 2022 Sep;10(9):1792.
- Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016 Jul 12;24(1):41–50.
- Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol-Gastrointest Liver Physiol. 2020 Mar;318(3):G554–73.
- Yang R, Qian L. Research on Gut Microbiota-Derived Secondary Bile Acids in Cancer Progression. Integr Cancer Ther. 2022;21:15347354221114100.
- Jia W, Xie G, Jia W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018 Feb;15(2):111–28.
- Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. Int J Mol Sci. 2019 Jan;20(5):1214.
- Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016 Jan 2;7(1):22–39.
- Soung A, Klein RS. Viral Encephalitis and Neurologic Diseases: Focus on Astrocytes. Trends Mol Med. 2018 Nov 1;24(11):950–62.
- Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019 Dec;576(7785):143–8.
- Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile acids activated receptors regulate innate immunity. Front Immunol. 2018;9:1853. [CrossRef]
- Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021 Nov;599(7885):458–64.
- Kiriyama Y, Nochi H. The Role of Gut Microbiota-Derived Lithocholic Acid, Deoxycholic Acid and Their Derivatives on the Function and Differentiation of Immune Cells. Microorganisms. 2023 Nov;11(11):2730.
- Witkowski M, Weeks TL, Hazen SL. Gut Microbiota and Cardiovascular Disease. Circ Res. 2020 Jul 31;127(4):553–70.
- Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020 Mar 14;8(1):36.
- Yntema T, Koonen DPY, Kuipers F. Emerging Roles of Gut Microbial Modulation of Bile Acid Composition in the Etiology of Cardiovascular Diseases. Nutrients. 2023 Apr 12;15(8):1850.
- Vrancken G, Gregory AC, Huys GRB, Faust K, Raes J. Synthetic ecology of the human gut microbiota. Nat Rev Microbiol. 2019 Dec;17(12):754–63.
- Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019 Oct;16(10):605–16.
- Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, et al. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol Metab. 2020 Dec 1;42:101087.
- Ibrahimovic M, Franzmann E, Mondul AM, Weh KM, Howard C, Hu JJ, et al. Disparities in Head and Neck Cancer: A Case for Chemoprevention with Vitamin D. Nutrients. 2020 Sep;12(9):2638.
- Ng KM, Aranda-Díaz A, Tropini C, Frankel MR, Treuren WV, O’Loughlin CT, et al. Recovery of the Gut Microbiota after Antibiotics Depends on Host Diet, Community Context, and Environmental Reservoirs. Cell Host Microbe. 2019 Nov 13;26(5):650-665.e4.
- Rüb AM, Tsakmaklis A, Gräfe SK, Simon MC, Vehreschild MJ, Wuethrich I. Biomarkers of human gut microbiota diversity and dysbiosis. Biomark Med. 2021 Feb;15(2):137–48.
- Brandsma E, Kloosterhuis NJ, Koster M, Dekker DC, Gijbels MJJ, van der Velden S, et al. A Proinflammatory Gut Microbiota Increases Systemic Inflammation and Accelerates Atherosclerosis. Circ Res. 2019 Jan 4;124(1):94–100.
- Rai, V. High-Fat Diet, Epigenetics, and Atherosclerosis: A Narrative Review. Nutrients. 2025 Jan;17(1):127.
- Mao Y, Kong C, Zang T, You L, Wang LS, Shen L, et al. Impact of the gut microbiome on atherosclerosis. mLife. 2024;3(2):167–75.
- Hutchison ER, Kasahara K, Zhang Q, Vivas EI, Cross TWL, Rey FE. Dissecting the impact of dietary fiber type on atherosclerosis in mice colonized with different gut microbial communities. NPJ Biofilms Microbiomes. 2023 Jun 3;9(1):31.
- Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol. 2020 Nov;17(11):687–701.
- Makki K, Deehan EC, Walter J, Bäckhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe. 2018 Jun 13;23(6):705–15.
- Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol. 2025;16:1559521. [CrossRef]
- Hoving LR, Katiraei S, Heijink M, Pronk A, van der Wee-Pals L, Streefland T, et al. Dietary Mannan Oligosaccharides Modulate Gut Microbiota, Increase Fecal Bile Acid Excretion, and Decrease Plasma Cholesterol and Atherosclerosis Development. Mol Nutr Food Res. 2018;62(10):1700942.
- Park KS, Kim HJ, Hwang JT, Ko BS. Dioscorea nipponica extracts enhance recovery from skeletal muscle atrophy by suppressing NF-κB expression. J Funct Foods. 2020 Oct 1;73:104109.
- Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, et al. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell. 2018 Sep 6;174(6):1406-1423.e16.
- McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol. 2010 May 14;16(18):2202–22.
- O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017 Apr 25;2(5):17057.
- Cruz Neto JPR, de Luna Freire MO, de Albuquerque Lemos DE, Ribeiro Alves RMF, de Farias Cardoso EF, de Moura Balarini C, et al. Targeting Gut Microbiota with Probiotics and Phenolic Compounds in the Treatment of Atherosclerosis: A Comprehensive Review. Foods. 2024 Jan;13(18):2886.
- Hassan A, Luqman A, Zhang K, Ullah M, Din AU, Xiaoling L, et al. Impact of Probiotic Lactiplantibacillus plantarum ATCC 14917 on atherosclerotic plaque and its mechanism. World J Microbiol Biotechnol. 2024 May 10;40(7):198.
- Ramireddy L, Tsen HY, Chiang YC, Hung CY, Wu SR, Young SL, et al. Molecular Identification and Selection of Probiotic Strains Able to Reduce the Serum TMAO Level in Mice Challenged with Choline. Foods Basel Switz. 2021 Nov 27;10(12):2931.
- de Souza EL, de Albuquerque TMR, Dos Santos AS, Massa NML, de Brito Alves JL. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities - A review. Crit Rev Food Sci Nutr. 2019;59(10):1645–59.
- Sampaio KB, do Nascimento YM, Tavares JF, Cavalcanti MT, de Brito Alves JL, Garcia EF, et al. Development and in vitro evaluation of novel nutraceutical formulations composed of Limosilactobacillus fermentum, quercetin and/or resveratrol. Food Chem. 2021 Apr 16;342:128264.
- Chen PB, Black AS, Sobel AL, Zhao Y, Mukherjee P, Molparia B, et al. Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nat Biotechnol. 2020 Nov;38(11):1288–97.
- Qiao S, Liu C, Sun L, Wang T, Dai H, Wang K, et al. Gut Parabacteroides merdae protects against cardiovascular damage by enhancing branched-chain amino acid catabolism. Nat Metab. 2022 Oct;4(10):1271–86.
- Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64(6):872-83. [CrossRef]
- Lu XL, Zhao CH, Yao XL, Zhang H. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed Pharmacother Biomedecine Pharmacother. 2017 Jan;85:658–71.
- Hewlings SJ, Kalman DS. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017 Oct 22;6(10):92.
- Shilpa VS, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, et al. Phytochemical Properties, Extraction, and Pharmacological Benefits of Naringin: A Review. Mol Basel Switz. 2023 Jul 25;28(15):5623.
- Tang WHW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015 Jan 30;116(3):448–55.
- Liu TX, Niu HT, Zhang SY. Intestinal Microbiota Metabolism and Atherosclerosis. Chin Med J (Engl). 2015 Oct 20;128(20):2805–11.
- Skye SM, Zhu W, Romano KA, Guo CJ, Wang Z, Jia X, et al. Microbial Transplantation With Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential. Circ Res. 2018 Oct 26;123(10):1164–76.
- Cha RR, Sonu I. Fecal microbiota transplantation: present and future. Clin Endosc. 2025 May;58(3):352–9.
- Sanchez-Rodriguez E, Egea-Zorrilla A, Plaza-Díaz J, Aragón-Vela J, Muñoz-Quezada S, Tercedor-Sánchez L, et al. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients. 2020 Feb 26;12(3):605.
- Chen JH, Chiu CH, Chen CC, Chen YC, Yeh PJ, Kuo CJ, et al. Comparative Efficacy of Fecal Microbiota Transplantation in Treating Refractory or Recurrent Clostridioides difficile Infection among Patients with and without Inflammatory Bowel Disease: A Retrospective Cohort Study. Biomedicines. 2024 Jun 23;12(7):1396.
- da Ponte Neto AM, Clemente ACO, Rosa PW, Ribeiro IB, Funari MP, Nunes GC, et al. Fecal microbiota transplantation in patients with metabolic syndrome and obesity: A randomized controlled trial. World J Clin Cases. 2023 Jul 6;11(19):4612–24.
| Phyla/Genera | Healthy State | Dysbiotic State (Atherosclerosis) | Impact on Atherosclerosis |
|---|---|---|---|
| Firmicutes | High abundance (e.g., Lactobacillus, Clostridium) | Increased (elevated F/B ratio) | Promotes inflammation, TMAO production |
| Bacteroidetes | High abundance (e.g., Bacteroides, Prevotella) | Decreased | Reduced SCFA production, impaired barrier function |
| Actinobacteria | Present (e.g., Bifidobacterium) | Decreased | Reduced anti-inflammatory effects |
| Proteobacteria | Low abundance | Increased (e.g., Escherichia, Klebsiella) | Enhances LPS-mediated inflammation |
| Akkermansia muciniphila | High abundance | Decreased | Impaired gut barrier, increased inflammation |
| Metabolite | Source | Mechanisms in Atherosclerosis | Effect |
|---|---|---|---|
| Lipopolysaccharides (LPS) | Gram-negative bacteria | Activates TLR4/NF-κB, promotes cytokine production (IL-6, TNF-α), induces endothelial dysfunction | Pro-atherogenic |
| Trimethylamine N-oxide (TMAO) | Dietary choline, L-carnitine metabolism | Enhances foam cell formation, platelet activation, oxidative stress, and vascular inflammation | Pro-atherogenic |
| Short-Chain Fatty Acids (SCFAs) | Fermentation of dietary fibers | Inhibits NF-κB, promotes Treg cells, enhances NO production, reduces foam cell formation | Anti-atherogenic |
| Secondary Bile Acids (DCA, LCA) | Microbial transformation of primary BAs | Modulates FXR/TGR5 signaling, promotes inflammation at high levels, anti-inflammatory at low levels | Context-dependent (pro- or anti-atherogenic) |
| Metabolite | Receptor/Pathway | Effect on Atherosclerosis | Key Outcomes |
|---|---|---|---|
| LPS | TLR4, NF-κB, MyD88, MAPK | Promotes inflammation, cytokine production, endothelial dysfunction | Increased monocyte recruitment, plaque instability |
| TMAO | NF-κB, MAPK, NLRP3, SIRT3-SOD2 | Enhances oxidative stress, foam cell formation, thrombosis | Increased plaque formation, vascular inflammation |
| SCFAs | FFAR2, FFAR3, GPR41, Nrf2, HDACs | Reduces inflammation, enhances NO production, stabilizes plaques | Improved lipid metabolism, reduced foam cells |
| Secondary Bile Acids | FXR, TGR5, PXR, RORγt | Modulates inflammation, lipid metabolism, immune cell balance | Context-dependent (anti- or pro-atherogenic) |
| Intervention | Mechanism | Evidence | Challenges |
|---|---|---|---|
| Dietary Interventions | Enhances SCFA production, reduces TMAO, promotes beneficial bacteria (e.g., Mediterranean diet) | Reduced cardiometabolic risk, improved microbial diversity (6, 98) | Requires long-term adherence, variable response |
| Prebiotics | Promotes SCFA production, enhances gut barrier (e.g., inulin, pectin) | Reduced atherosclerosis in mice, increased butyrate (108, 109) | Modest, temporary effects on microbiota |
| Probiotics | Reduces cholesterol, TMAO, inflammation (e.g., Lactobacillus, Bifidobacterium) | Improved lipid profiles, reduced plaque in ApoE−/− mice (113, 114) | Inconsistent colonization, strain variability |
| Small Molecules (e.g., DMB, IMC) | Inhibits TMAO production, reduces cholesterol | Reduced plaque area, cholesterol by 36% in mice (70, 118) | Potential side effects (e.g., trimethylaminuria) |
| Phenolic Compounds | Reduces TMAO, inflammation, enhances microbial diversity (e.g., quercetin) | Decreased lesions, improved lipid profiles in mice (120, 121) | Limited human data, synergistic effects unclear |
| Fecal Microbiota Transplantation (FMT) | Restores microbial balance, reduces TMAO, improves lipid metabolism | Reduced plaque in animal models, limited human data (127, 128) | Safety concerns, limited clinical evidence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
