Submitted:
19 June 2025
Posted:
20 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Breathing and Speech Breathing
1.2. Articulation Tasks in Evaluating Respiratory Functions
1.2.1. Types of Speech Breathing Tasks
1.2.2. Measures of Speech Rate: Phoneme, Syllable and Word
1.3. Speech Rate in Health and Patient Groups
1.4. AI and Speech Breathing
1.4.1. Physiological and Psychological Stress Detection
1.4.2. Deep Learning for Speech-Based Health Monitoring
1.5. Rationale and Aims of the Research
- Do the order of breathing runs (e.g., first run vs. second run) and breathing groups affect the speech rate during articulation of “pīng pāng qiú”?
- Is there a correlation between speech rate and lung function measures, particularly PEF ?
2. Materials and Methods
2.1. Participants
2.2. Apparatus
2.3. Procedure
“For this task, please repeat the word ‘pīng pāng qiú’ as quickly and as many times as possible, each time for 30 seconds. You will perform this task three times, with a short 20-second rest between each session. When I say ‘start,’ please begin repeating ‘pīng pāng qiú’ until I say ‘stop.’ After a 20-second rest, I will say ‘start,’ and you should continue repeating the word until I say ‘stop.’ After another rest, I will ask you to do it one more time. I will time and record the entire procedure, so please sit quietly during the rest periods.”
“Do you have any questions?”
“Are you ready to begin?”
3. Results
3.1. Breathing Effects
3.1.1. Speech Rate
3.1.2. Breathing group Duration
3.1.3. Pause Duration
3.2. Regression Methods and Hyperparameter Optimization
| Score | rmse (cv)↓ | rmse (test)↓ |
|---|---|---|
| FVC | 0.986 | 0.659 |
| FEV1 | 0.744 | 0.592 |
| FF | 7.783 | 5.451 |
| PEF | 2.057 | 1.218 |
| MEF75 | 1.656 | 1.185 |
| MEF50 | 1.163 | 0.936 |
| MEF25 | 0.651 | 0.507 |
| MVV | 31.243 | 24.248 |
3.2.1. All Features
| Score | Method | rmse (cv)↓ | rmse (test)↓ | Pearson’s r(cv)↑ | Pearson’s r(test)↑ |
|---|---|---|---|---|---|
| FVC | Random Forest | 0.504 | 0.670 | 0.886 | 0.718 |
| FEV1 | Gradient Boosting | 0.404 | 0.425 | 0.853 | 0.750 |
| FF | ElasticNet | 7.451 | 6.121 | 0.279 | -0.434 |
| PEF | AdaBoost | 1.212 | 1.181 | 0.811 | 0.627 |
| MEF75 | Random Forest | 1.045 | 1.125 | 0.764 | 0.550 |
| MEF50 | Random Forest | 0.973 | 1.011 | 0.522 | 0.359 |
| MEF25 | SVR | 0.653 | 0.504 | 0.069 | -0.618 |
| MVV | AdaBoost | 22.460 | 16.650 | 0.710 | 0.723 |
3.2.2. Speech + Breath Features
| Score | Method | rmse (cv)↓ | rmse (test)↓ | Pearson’s r (cv)↑ |
Pearson’s r (test)↑ |
|---|---|---|---|---|---|
| FVC | Gradient Boosting | 0.921 | 0.931 | 0.458 | -0.345 |
| FEV1 | AdaBoost | 0.670 | 0.641 | 0.512 | 0.04 |
| FF | SVR | 7.755 | 5.462 | -0.130 | 0.204 |
| PEF | Random Forest | 1.773 | 1.303 | 0.510 | 0.344 |
| MEF75 | Random Forest | 1.356 | 1.251 | 0.550 | 0.294 |
| MEF50 | Gradient Boosting | 1.135 | 0.950 | 0.203 | 0.021 |
| MEF25 | Gradient Boosting | 0.661 | 0.51 | 0.048 | -0.342 |
| MVV | ElasticNet | 28.180 | 22.007 | 0.441 | 0.463 |
3.2.3. Breath-Only Features
| Score | Method | rmse (cv)↓ | rmse (test)↓ | Pearson’s r (cv)↑ | Pearson’s r (test)↑ |
|---|---|---|---|---|---|
| FVC | AdaBoost | 0.884 | 0.847 | 0.538 | - 0.222 |
| FEV1 | AdaBoost | 0.689 | 0.6690 | 0.453 | - 0.113 |
| FF | SVR | 7.747 | 5.446 | 0.080 | 0.210 |
| PEF | ElasticNet | 1.992 | 1.145 | 0.171 | 0.338 |
| MEF75 | AdaBoost | 1.590 | 1.204 | 0.291 | 0.261 |
| MEF50 | Gradient Boosting | 1.163 | 0.905 | -0.154 | 0.465 |
| MEF25 | Gradient Boosting | 0.659 | 0.494 | 0.0132 | -0.007 |
| MVV | Ridge | 29.71 | 21.05 | 0.264 | 0.484 |
3.2.4. Speech-Only Features
| Score | Method | rmse (cv)↓ | rmse (test)↓ | Pearson’s r (cv)↑ | Pearson’s r (test)↑ |
|---|---|---|---|---|---|
| FVC | Adaboost | 0.927 | 0.770 | 0.436 | 0.047 |
| FEV1 | Adaboost | 0.6426 | 0.627 | 0.550 | 0.158 |
| FF | SVR | 7.7572 | 5.462 | -0.248 | 0.180 |
| PEF | Adaboost | 1.632 | 1.593 | 0.607 | 0.230 |
| MEF75 | Adaboost | 1.314 | 1.397 | 0.568 | 0.207 |
| MEF50 | Gradient Boosting | 1.130 | 0.972 | 0.251 | -0.121 |
| MEF25 | Gradient Boosting | 0.6635 | 0.519 | -0.066 | -0.178 |
| MVV | Lasso | 28.2391 | 22.630 | 0.431 | 0.390 |
3.2.5. Model Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BMI | Body Mass Index |
| FVC | Forced Vital Capacity |
| FEV1 | Forced Expiratory Volume in 1 Second |
| FF | ratio of FEV1 to FVC |
| PEF | Peak Expiratory Flow |
| MEF75 | Maximal Expiratory Flow at 75% of FVC |
| MEF50 | Maximal Expiratory Flow at 50% of FVC |
| MEF25 | Maximal Expiratory Flow at 25% of FVC |
| MVV | Maximum Voluntary Ventilation |
References
- Zeng, B.; Williams, E.M.; Owen, C.; Zhang, C.; Davies, S.K.; Evans, K.; Preudhomme S-R. Exploring the acoustic and prosodic features of a lung-function-sensitive repeated-word speech articulation test. Front. Psychol. 2023, 14, 1167902. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.J. The phonetics of speech breathing: pauses, physiology, acoustics, and perception. PhD dissertation, der Universität des Saarlandes, Saarbrücken, 2023.
- Hoit, J.D.; Hixon, T.J. Age and speech breathing. Journal of Speech, Language, and Hearing Research. 1987, 30, 351–66. [Google Scholar] [CrossRef] [PubMed]
- Solomon, N.P.; Hixon, T.J. Speech breathing in Parkinson’s disease. Journal of Speech, Language, and Hearing Research. 1993, 36, 294–310. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R.J.; Gaskill, C.S.; Bausek, N. Effect of combined respiratory muscle training (cRMT) on dysphonia following single CVA: a retrospective pilot study. Journal of Voice. 2023, 37, 529–38. [Google Scholar] [CrossRef] [PubMed]
- Cummins, E.P.; Strowitzki, M.J.; Taylor, C.T. Mechanisms and consequences of oxygen and carbon dioxide sensing in mammals. Physiological reviews. 2020, 100, 463–88. [Google Scholar] [CrossRef] [PubMed]
- Honda, K. Physiological processes of speech production. Springer handbook of speech processing. 2008:7-26.
- Patel, N.; Chong, K.; Baydur, A. Methods and applications in respiratory physiology: Respiratory mechanics, drive and muscle function in neuromuscular and chest wall disorders. Frontiers in Physiology. 2022,14;13:838414.
- Hixon, T.J.; Weismer, G., Hoit, J.D. Preclinical speech science: Anatomy, physiology, acoustics, and perception. Plural Publishing; 2018 Aug 31.
- Traser, L.; Burk, F.; Özen, A.C.; Burdumy, M.; Bock, M.; Blaser, D.; Richter, B.; Echternach, M. Respiratory kinematics and the regulation of subglottic pressure for phonakenttion of pitch jumps–a dynamic MRI study. PLoS One. 2020, 31;15:e0244539.
- Murray, E.S.; Michener, C.M.; Enflo, L.; Cler, G.J.; Stepp, C.E. The impact of glottal configuration on speech breathing. Journal of Voice. 2018, 1, 32–420. [Google Scholar]
- Krohn, F.; Novello, M.; van der Giessen, R.S.; De Zeeuw, C.I.; Pel, J.J.; Bosman, L.W. The integrated brain network that controls respiration. Elife. 2023, 8;12:e83654.
- Simonyan, K.; Horwitz, B. Laryngeal motor cortex and control of speech in humans. The Neuroscientist. 2011, 17:197-208.
- Darling-White, M.; Anspach, Z.; Huber, J.E. Longitudinal effects of Parkinson’s disease on speech breathing during an extemporaneous connected speech task. Journal of Speech, Language, and Hearing Research. 2022, 4;65:1402-15.
- Subramaniam, N.S.; Bawden, C.S.; Waldvogel, H.; Faull, R.M.; Howarth, G.S.; Snell, R.G. Emergence of breath testing as a new non-invasive diagnostic modality for neurodegenerative diseases. Brain Research. 2018,15;1691:75-86.
- Ghosh, S. Breathing disorders in neurodegenerative diseases. Handbook of Clinical Neurology. 2022, 1;189:223-39.
- Moreno, E.G.; Calassa, B.T.; Oliveira, D.V.; Silva, M.I.; Albuquerque, L.C.; Freitas-Dias, R.D.; Silva, B.R.; Araújo, R.C.; Costa, E.L.; Costa, E.C.; Correia Junior, M.A. Maximum phonation time in the pulmonary function assessment. Revista CEFAC. 2021,24;23:e9720.
- Feltrin, T.D.; Gracioli, M.D.; Cielo, C.A.; Souza, J.A.; de Oliveira Moraes, D.A.; Pasqualoto, A.S. Maximum phonation times as biomarkers of lung function. Journal of Voice. 2024, 8.
- Maslan, J.; Leng, X.; Rees, C.; Blalock, D.; Butler, S.G. Maximum phonation time in healthy older adults. Journal of Voice. 2011,1;25:709-13.
- Vaca, M.; Mora, E.; Cobeta, I. The aging voice: influence of respiratory and laryngeal changes. Otolaryngology–Head and Neck Surgery. 2015,153:409-13.
- Eckel, F.C.; Boone, D.R. The s/z ratio as an indicator of laryngeal pathology. Journal of speech and hearing disorders. 1981,46:147-9.
- Vaca, M.; Cobeta, I.; Mora, E.; Reyes, P. Clinical assessment of glottal insufficiency in age-related dysphonia. Journal of Voice. 2017,1;31:128-e1.
- Yang, C.C.; Chung, Y.M.; Chi, L.Y.; Chen, H.H.; Wang, Y.T. Analysis of verbal diadochokinesis in normal speech using the diadochokinetic rate analysis program. Journal of Dental Sciences. 2011,1;6:221-6.
- Kent, R.D.; Kim, Y.; Chen, L.M. Oral and laryngeal diadochokinesis across the life span: A scoping review of methods, reference data, and clinical applications. Journal of Speech, Language, and Hearing Research. 2022, 9;65:574-623.
- Kent, R.D. Research on speech motor control and its disorders: a review and prospective. J Commun Disorder. 2000,33:391-428. [CrossRef]
- Lancheros, M.; Pernon, M.;Laganaro, M. Is there a continuum between speech and other oromotor tasks? evidence from motor speech disorders, Aphasiology, 2022, 37, 715–734. [CrossRef]
- Bouvier, L.; McKinlay, S.; Truong, J.; Genge, A.; Dupré, N.; Dionne, A.; Kalra, S.; Yunusova, Y. Speech timing and monosyllabic diadochokinesis measures in the assessment of amyotrophic lateral sclerosis in Canadian French. Int J Speech Lang Pathol. 2024, 26:267-277. [CrossRef]
- Dietsch, A.M.; Mocarski, R.; Hope, D.A.; Woodruff, N.; McKelvey, M. Revisiting the rainbow: Culturally responsive updates to a standard clinical resource. American Journal of Speech-Language Pathology. 2023,11;32:377-80.
- Wang, Y.T.; Green, J.R.; Nip, I.S.; Kent, R.D.; Kent, J.F. Breath group analysis for reading and spontaneous speech in healthy adults. Folia Phoniatrica et Logopaedica. 2010,62:297-302.
- Zhang, Z. Respiratory laryngeal coordination in airflow conservation and reduction of respiratory effort of phonation. Journal of Voice. 2016,30:760-e7.
- Honda, J.; Murakawa, M.; Inoue, S. Effect of averaging time and respiratory pause time on the measurement of acoustic respiration rate monitoring. JA Clinical Reports. 2023, 9:61.
- Dishnica, N.; Vuong, A.; Xiong, L.; Tan, S.; Kovoor, J.; Gupta, A.; Stretton, B.; Goh, R.; Harroud, A.; Schultz, D.; Malycha, J. Single count breath test for the evaluation of respiratory function in myasthenia gravis: a systematic review. Journal of Clinical Neuroscience. 2023,112:58-63.
- Waage, A.K.; Iwarsson, J. The Effect of Speaking Rate on Voice and Breathing Behavior. Journal of Voice. 2024. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; O’Connell, C.; Kass, L.; Graff, G. Single-breath counting: a pilot study of a novel technique for measuring pulmonary function in children. The American journal of emergency medicine. 2011, 29:33-.
- . Winkworth, A.L.; Davis, P.J.; Adams, R.D.; Ellis, E. Breathing patterns during spontaneous speech. Journal of Speech, Language, and Hearing Research. 1995, 38:124-44.
- Kent, R.D.; Kent, J.F.; Rosenbek, J.C. Maximum performance tests of speech production. Journal of speech and hearing disorders. 1987,52:367-87.
- Shriberg, L.D.; Kwiatkowski, J. Continuous speech sampling for phonologic analyses of speech-delayed children. Journal of speech and hearing disorders.
- Heselwood, B. Howard, S. Clinical phonetic transcription. The handbook of clinical linguistics. 2008,381-9.
- de Jong, N. H.; Wempe, T. Praat script to detect syllable nuclei and measure speech rate automatically. Behavior Research Methods. 2009, 41:385–390.
- Franke, M.; Hoole, P.; Schreier, R.; Falk, S. Reading Fluency in Children and Adolescents Who Stutter. Brain Sciences. 2021,11:1595.
- Darling-White, M.; Banks, S.W. Speech rate varies with sentence length in typically developing children. Journal of Speech, Language, and Hearing Research. 2021,64(6S):2385-91.
- Peres, L.M.; Juste, F.; Costa, J.B.; Sassi, F.C.; Ritto, A.P.; Andrade, C.R. Variability of speech rate and articulatory transition ability. Audiology-Communication Research. 2024, 29:e2883.
- Gordon, J.K.; Clough, S. How do clinicians judge fluency in aphasia?. Journal of Speech, Language, and Hearing Research. 2022, 65:1521-42.
- Tanner, J.; Sonderegger, M.; Stuart-Smith, J.; Kendall, T.; Mielke, J.; Dodsworth, R.; Thomas, E. Exploring the anatomy of articulation rate in spontaneous English speech: relationships between utterance length effects and social factors. arXiv preprint arXiv:2408.06732. 2024,13. arXiv:2408.06732. 2024,13.
- Luz, S.; De La Fuente Garcia, S.; Albert, P. A Method for Analysis of Patient Speech in Dialogue for Dementia Detection. In Resources and Processing of linguistic, para-linguistic and extra-linguistic data from people with various forms of cognitive impairment. Paris, France: ELRA. 2018. p. 35-42.
- Tong, J.Y.; Sataloff, R.T. Respiratory function and voice: the role for airflow measures. Journal of Voice. 2022,36:542-53.
- Kuhlmann, L.L.; Iwarsson, J. Effects of speaking rate on breathing and voice behavior. Journal of Voice. 2024,38:346-56.
- Farrús, M.; Codina-Filbà, J.; Reixach, E.; Andrés, E.; Sans, M.; Garcia, N.; Vilaseca, J. Speech-based support system to supervise chronic obstructive pulmonary disease patient status. Applied Sciences. 2021,11:7999.
- Binazzi, B.; Lanini, B.; Romagnoli, I.; Garuglieri, S.; Stendardi, L.; Bianchi, R.; Gigliotti, F.; Scano, G. Dyspnea during speech in chronic obstructive pulmonary disease patients: effects of pulmonary rehabilitation. Respiration. 2011, 81:379-85.
- Mayr, W.; Triantafyllopoulos, A.; Batliner, A.; Schuller, B.W.; Berghaus, T.M. Assessing the clinical and functional status of COPD patients using speech analysis during and after exacerbation. International Journal of Chronic Obstructive Pulmonary Disease. 2025,137-47.
- Llewellin, P.; Sawyer, G.; Lewis, S.; Cheng, S.O; Weatherall, M.; Fitzharris, P.; Beasley, R. The relationship between FEV1 and PEF in the assessment of the severity of airways obstruction. Respirology. 2002, 7:333-7.
- Tayler, N.; Grainge, C.; Gove, K.; Howarth, P.; Holloway, J. Clinical assessment of speech correlates well with lung function during induced bronchoconstriction. NPJ primary care respiratory medicine. 2015,25:1-3.
- Koury, T.G.; Counselman, F.L.; Huff, J.S.; Peebles, J.S.; Kolm, P. Comparison of peak expiratory flow rate with speaking time in ED patients presenting with acute exacerbation of asthma. The American journal of emergency medicine. 1998, 16:572-5.
- Loudon, R.G.; Lee, L.; Holcomb, B.J. Volumes and breathing patterns during speech in healthy and asthmatic subjects. Journal of Speech, Language, and Hearing Research. 1988, 31:219-27.
- Wiechern, B.; Liberty, K.A.; Pattemore, P.; Lin, E. Effects of asthma on breathing during reading aloud. Speech, Language and Hearing. 2018, 21:30-40.
- Nallanthighal, V.S.; Mostaani, Z.; Härmä, A.; Strik, H.; Magimai-Doss, M. Deep learning architectures for estimating breathing signal and respiratory parameters from speech recordings. Neural Networks. 2021,141:211-24.
- Alam, M.Z.; Simonetti, A.; Brillantino, R.; Tayler, N.; Grainge, C.; Siribaddana, P.; Nouraei, S.R.; Batchelor, J.; Rahman, M.S.; Mancuzo, E.V.; Holloway, J.W. Predicting pulmonary function from the analysis of voice: a machine learning approach. Frontiers in digital health. 2022,4:750226.
- Ngo, D.; Pham, L.; Phan, H.; Tran, M.; Jarchi, D. A deep learning architecture with spatio-temporal focusing for detecting respiratory anomalies. In2023 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2023 Oct 19 (pp. 1-5). IEEE.
- Pham, L.; Phan, H.; Palaniappan, R.; Mertins, A.; McLoughlin, I. CNN-MoE based framework for classification of respiratory anomalies and lung disease detection. IEEE journal of biomedical and health informatics. 2021 Mar 8;25:2938-47.
- Jácome, C.; Ravn, J.; Holsbø, E.; Aviles-Solis, J.C.; Melbye, H.; Ailo Bongo, L. Convolutional neural network for breathing phase detection in lung sounds. Sensors. 2019,19:1798.
- Farrús, M.; Codina-Filbà, J.; Escudero, J. Acoustic and prosodic information for home monitoring of bipolar disorder. Health Informatics Journal. 2021,27:1460458220972755.
- Cummins, N.; Baird, A.; Schuller, B.W. Speech analysis for health: Current state-of-the-art and the increasing impact of deep learning. Methods. 2018,151:41-54.
- Kappen, M.; Vanhollebeke, G.; Van Der Donckt, J.; Van Hoecke, S.; Vanderhasselt, M.A. Acoustic and prosodic speech features reflect physiological stress but not isolated negative affect: a multi-paradigm study on psychosocial stressors. Scientific Reports. 2024,14:5515.
- Heitmann, J.; Glangetas, A.; Doenz, J.; Dervaux, J.; Shama, D.M.; Garcia, D.H.; Benissa, M.R.; Cantais, A.; Perez, A,; Müller, D.; Chavdarova, T. DeepBreath—automated detection of respiratory pathology from lung auscultation in 572 pediatric outpatients across 5 countries. NPJ digital medicine. 2023,6:104.
- Huang, D.M.; Huang, J.; Qiao, K.; Zhong, N.S.; Lu, H.Z.; Wang, W.J. Deep learning-based lung sound analysis for intelligent stethoscope. Military Medical Research. 2023,10:44.
- Nallanthighal, V.S.; Strik, H. Deep sensing of breathing signal during conversational speech. In: Proceedings of the 20th Annual Conference of the International Speech Communication Association (Interspeech); 2019. p. 4110–4114. [CrossRef]
- Schultz, B.G.; Joukhadar, Z.; Nattala, U., del Mar Quiroga, M.; Noffs, G.; Rojas, S.; Reece, H.; Van Der Walt, A.; Vogel, A.P. Disease Delineation for Multiple Sclerosis, Friedreich Ataxia, and Healthy Controls Using Supervised Machine Learning on Speech Acoustics. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023 Oct 4;31:4278-85.
- Noto, S.; Sekiyama, Y.; Nagata, R.; Yamamoto, G.; Tamura T. Analysis of Speech Features in Alzheimer’s Disease with Machine Learning: A Case-Control Study. Healthcare. 2024, Vol. 12, No. 21, p. 2194.
- Boersma, P, Weenink, D. Praat: doing phonetics by computer program. Version 6.4.35. Retrieved from http://www.praat.org/. 2025.
- Winkworth, A.L.; Davis, P.J.; Ellis, E.; Adams, R.D. Variability and consistency in speech breathing during reading: Lung volumes, speech intensity, and linguistic factors. Journal of Speech, Language, and Hearing Research. 1994, 37:535-56.
- LoMauro, A.; Aliverti, A. Sex differences in respiratory function. <italic>Breathe</italic>. <bold>2018</bold>, 14: 131–140.
- Stathopoulos, E.T.; Sapienza, C. Respiratory and laryngeal function of women and men during vocal intensity variation. Journal of Speech, Language, and Hearing Research. 1993, 36:64-75.
- Pépiot, E. Male and female speech: a study of mean f0, f0 range, phonation type and speech rate in Parisian French and American English speakers. Speech prosody 7. 2014; pp 305-309.
- Yuan, J.; Liberman, M.; Cieri, C. Towards an integrated understanding of speaking rate in conversation. Interspeech 2006 Sep 17.
- Kim, J. Effects of gender, age, and individual speakers on articulation rate in Seoul Korean spontaneous speech. Phonetics and Speech Sciences. 2018,10:19-29.
- Van Borsel, J.; De Maesschalck, D. Speech rate in males, females, and male-to-female transsexuals. Clinical Linguistics & Phonetics. 2008, 22:679-85.
- Hodge, M.M.; Rochet, A.P. Characteristics of speech breathing in young women. Journal of Speech, Language, and Hearing Research. 1989,32:466-80.
| Parameters | Mean | SD |
|---|---|---|
| Age | 22.49 | 3.52 |
| Height | 1.69 | 0.08 |
| Weight | 64.91 | 13.42 |
| BMI | 22.75 | 3.91 |
| FVC | 4.15 | 0.93 |
| FEV1 | 3.48 | 0.72 |
| FF | 84.38 | 6.62 |
| PEF | 7.47 | 1.93 |
| MEF75 | 6.57 | 1.58 |
| MEF50 | 4.26 | 1.13 |
| MEF25 | 1.76 | 0.63 |
| MVV | 121.54 | 30.56 |
| Run | Group | Group Duration | Pause Duration | Speech Rate |
|---|---|---|---|---|
| 1st | 1st | 7.41 (2.75) | .69 (.46) | 2.17 (.28) |
| 2nd | 5.14 (2.68) | 2.04 (.25) | ||
| 2nd | 1st | 7.50 (2.83) | .67 (.38) | 2.06 (.25) |
| 2nd | 5.16 (2.88) | 1.92 (.29) | ||
| 3rd | 1st | 7.45 (2.96) | .73 (.42) | 2.03 (.29) |
| 2nd | 5.26 (2.67) | 1.85 (.32) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
