Submitted:
14 April 2025
Posted:
15 April 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Jellyfish Collagen
3. Jellyfish Rich in Collagen That Inhabit the Mediterranean Sea
3.1. Order Rhizostomeae
3.2. Jellyfish Species
4. Jellyfish Collagen Extraction Methods
4.1. Preparation and Pre-Treatment
4.2. Extraction Process
4.2.1. Acid-Based
4.2.2. Pepsin
4.2.3. Ultrasonic Assisted
4.2.4. Green Extraction Methods
4.3. Recovery, Purification and Stabilization
5. Application of Jellyfish Collagen
5.1. Nutraceutical
5.2. Cosmeceuticals
5.3. Biomaterials
| Jellyfish species | Collagen extraction method | Biomaterial type | Additive | Cross-linker | Biological evaluation | Application | References | |
|---|---|---|---|---|---|---|---|---|
| Rhizostoma pulmo | ![]() |
PSC | Scaffolds | Keratin/ nano-spherical hydroxyapatite from eggshells | EDC/NHS and uncross linked | Human periodontal ligament fibroblast | Bone tissue | [112] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Scaffolds | - | EDC and uncross linked | Wistar rats | Wound healing | [102] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Scaffolds | - | EDC | Ovarian cancer cells | Cell culture | [103] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Scaffolds | - | EDC/NHS | Wistar rats | Bone tissue | [104] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Collagen solution | - | - | Human induced pluripotent stem cells (UKBi005-A) | Cell culture | [105] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Scaffolds | - | EDC | Bovine chondroprogenitor cell | Cartilage tissue | [99] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Collagen solution and scaffolds | - | EDC | L929 fibroblasts and MC373-E1 pre-osteoblasts | Bone tissue | [113] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Hydrogel | - | Genipin | Chondrocytes | Cell culture | [106] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Hydrogel | Chitosan /fucoidan | - | Chondrocyte-like cells (ATDC5) | Cartilage tissue | [114] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Collagen solution | - | - | Fibroblast and pre-osteoblasts | Cell culture | [115] |
| Rhizostoma pulmo | ![]() |
ASC | Scaffolds | Chitosan | - | Rat embryonic liver cells | Liver tissue | [73] |
| Rhizostoma pulmo | ![]() |
ASC | Hydrogel | - | HRP/ H₂O₂ | Nasal Chondrocytes and MC3T3-E1 pre-osteoblastic | Cartilage tissue | [116] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Hydrogel | - | EDC/NHS; EDC/sNHS; PGE; Genipin | Immortalized human mesenchymal stem cells | Regenerative medicine | [117] |
| Rhizostoma pulmo | ![]() |
Jellagen® * | Collagen solution | - | - | Primary fibroblasts, HT-1080 human fibrosarcoma line and Y201 mesenchymal stem cells | Cell culture | [27] |
| Rhizostoma pulmo | ![]() |
ASC, PSC | Collagen solution | - | - | Human fibroblasts and MG-63 osteosarcoma cells | Cell culture | [22] |
| Cassiopea andromeda | ![]() |
ASC, PSC | Scaffolds | TPU | - | Human monocytes and porcine dermal fibroblasts | Regenerative medicine | [108] |
| Cassiopea andromeda | ![]() |
ASC, PSC | Hydrogel | TPU | - | Human monocytes and porcine dermal fibroblasts | Wound healing | [118] |
| Cassiopea andromeda | ![]() |
- | Scaffolds | - | - | Human fibroblasts | Skin tissue | [107] |
| Catostylus tagi | ![]() |
- | Hydrogel | - | EDC | - | Drug delivery | [110] |
| Catostylus tagi | ![]() |
ASC, PSC | Microparticles | - | - | - | Drug delivery | [111] |
6.1. Active Fishing
6.2. By-catch
6.3. Aquaculture
| Jellyfish species | Strobilation type | T (ºC) | Salinity | Tank | Foods regimen | Reference | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Polyp | Ephyra | Juvenile | Adult | Polyp | Ephyra | Juvenile | Adult | ||||||
| Cassiopea spp.* | ![]() |
Monodisc | 18–29 | 36–37, tolerant | WAK | WAK, MGT | MRT | MRT | R, NA | R, NA | R, NA | NA, WP | [43,46,134,135,141,144,146]15/04/2025 08:39:00 |
| Catostylus spp. | ![]() |
Oligodisc | 19–28 | 32–37, tolerant | - | MGT | K, P-K | K, P-K, MRT | MC, R, NA | MM, R, NA | NA | NA, WP, FC | [46,135,147,148] |
|
Cotylorhiza tuberculata* |
![]() |
Monodisc | 22–28 | 36–38, tolerant | WAK | WAK, MGT | P-K, MRT, RST | CT | R | R | NA | NA | [46,134,135,141] |
| Phyllorhiza punctata* | ![]() |
Monodisc | 13–25 | 36–37 | WAK | WAK | P-K, MRT, RST | K, P-K, CT | R, NA | R | NA | NA | [40,43,134,135,141,142] |
|
Rhizostoma luteum |
![]() |
Monodisc | 17–26 | 34–38 | - | MGT | K | K | R | NA | NA | NA | [42,142] |
| Rhizostoma pulmo | ![]() |
Oligodisc | 13–28 | 36–37 | WAK | WAK | K, P-K | MRT | R, NA | R, NA | NA, WP | NA, WP | [43,46,134,135,141] |
|
Rhopilema nomadicaa |
![]() |
Oligodisc* | 21–29 | 39–40 | - | K | K | K | NA | NA | NA | NA | [54,56]15/04/2025 08:39:00 |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations:
| ECM | Extracellular matrix |
| SFE | Supercritical Fluid Extraction |
| DES | Deep Eutectic Solvents |
| NADES | Natural Deep Eutectic Solvents |
| NIS | Non-indigenous species |
References
- Richardson, A.J.; Bakun, A.; Hays, G.C.; Gibbons, M.J. The Jellyfish Joyride: Causes, Consequences and Management Responses to a More Gelatinous Future. Trends Ecol. Evol. 2009, 24, 312–322. [Google Scholar] [CrossRef]
- Morandini, A.C. Impacts of Jellyfish: Gelatinous Problems or Opportunities? Arq. Ciênc. Mar 2022, 55, 123–140. [Google Scholar] [CrossRef]
- Kogovšek, T.; Bogunović, B.; Malej, A. Recurrence of Bloom-Forming Scyphomedusae: Wavelet Analysis of a 200-Year Time Series. Hydrobiologia 2010, 645, 81–96. [Google Scholar] [CrossRef]
- Brotz, L.; Cheung, W.W.L.; Kleisner, K.; Pakhomov, E.; Pauly, D. Increasing Jellyfish Populations: Trends in Large Marine Ecosystems. Hydrobiologia 2012, 690, 3–20. [Google Scholar] [CrossRef]
- Purcell, J.E.; Uye, S.I.; Lo, W.T. Anthropogenic Causes of Jellyfish Blooms and Their Direct Consequences for Humans: A Review. Mar. Ecol. Prog. Ser. 2007, 350, 153–174. [Google Scholar] [CrossRef]
- Condon, R.H.; Duarte, C.M.; Pitt, K.A.; Robinson, K.L.; Lucas, C.H.; Sutherland, K.R.; Mianzan, H.W.; Bogeberg, M.; Purcell, J.E.; Decker, M.B.; et al. Recurrent Jellyfish Blooms Are a Consequence of Global Oscillations. Proc. Natl. Acad. Sci. USA 2013, 110, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Dror, H.; Angel, D. Rising Seawater Temperatures Affect the Fitness of Rhopilema Nomadica Polyps and Podocysts and the Expansion of This Medusa into the Western Mediterranean. Mar. Ecol. Prog. Ser. 2024, 728, 123–143. [Google Scholar] [CrossRef]
- Treible, L.M.; Condon, R.H. Temperature-Driven Asexual Reproduction and Strobilation in Three Scyphozoan Jellyfish Polyps. J. Exp. Mar. Biol. Ecol. 2019, 520, 151204–151204. [Google Scholar] [CrossRef]
- Sperone, E.; Cipriano, G.; Chimienti, G.; Petrocelli, A.; Cillari, T.; Allegra, A.; Berto, D.; Bosch-Belmar, M.; Falautano, M.; Maggio, T.; et al. Snapshot of the Distribution and Biology of Alien Jellyfish Cassiopea Andromeda (Forsskål, 1775) in a Mediterranean Touristic Harbour. Biology 2022, 2022, 319–319. [Google Scholar]
- Duarte, C.M.; Pitt, K.A.; Lucas, C.H.; Purcell, J.E.; Uye, S.I.; Robinson, K.; Brotz, L.; Decker, M.B.; Sutherland, K.R.; Malej, A.; et al. Is Global Ocean Sprawl a Cause of Jellyfish Blooms? Front. Ecol. Environ. 2013, 11, 91–97. [Google Scholar] [CrossRef]
- Graham, W.M.; Gelcich, S.; Robinson, K.L.; Duarte, C.M.; Brotz, L.; Purcell, J.E.; Madin, L.P.; Mianzan, H.; Sutherland, K.R.; Uye, S.I.; et al. Linking Human Well-Being and Jellyfish: Ecosystem Services, Impacts, and Societal Responses. Front. Ecol. Environ. 2014, 12, 515–523. [Google Scholar] [CrossRef]
- Merquiol, L.; Romano, G.; Ianora, A.; D’Ambra, I. Biotechnological Applications of Scyphomedusae. Mar. Drugs 2019, 17, 604. [Google Scholar] [CrossRef]
- Bosch-Belmar, M.; Milisenda, G.; Basso, L.; Doyle, T.K.; Leone, A.; Piraino, S. Jellyfish Impacts on Marine Aquaculture and Fisheries. Rev. Fish. Sci. Aquac. 2021, 29, 242–259. [Google Scholar] [CrossRef]
- Canepa, A.; Fuentes, V.; Sabatés, A.; Piraino, S.; Boero, F.; Gili, J.-M. Pelagia Noctiluca in the Mediterranean Sea. In Jellyfish Blooms; Springer Netherlands: Dordrecht, 2014. [Google Scholar]
- Nunes, P.A.L.D.; Loureiro, M.L.; Piñol, L.; Sastre, S.; Voltaire, L.; Canepa, A. Analyzing Beach Recreationists’ Preferences for the Reduction of Jellyfish Blooms: Economic Results from a Stated-Choice Experiment in Catalonia, Spain. PLoS ONE 2015, 10, e0126681. [Google Scholar] [CrossRef]
- Milisenda, G.; Rosa, S.; Fuentes, V.L.; Boero, F.; Guglielmo, L.; Purcell, J.E.; Piraino, S. Jellyfish as Prey: Frequency of Predation and Selective Foraging of Boops Boops (Vertebrata, Actinopterygii) on the Mauve Stinger Pelagia Noctiluca (Cnidaria, Scyphozoa). PloS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Heaslip, S.G.; Iverson, S.J.; Bowen, W.D.; James, M.C. Jellyfish Support High Energy Intake of Leatherback Sea Turtles (Dermochelys Coriacea): Video Evidence from Animal-Borne Cameras. PloS ONE 2012, 7. [Google Scholar] [CrossRef]
- Fernández-Alías, A.; Marcos, C.; Quispe, J.I.; Sabah, S.; Pérez-Ruzafa, A. Population Dynamics and Growth in Three Scyphozoan Jellyfishes, and Their Relationship with Environmental Conditions in a Coastal Lagoon. Estuar. Coast. Shelf Sci. 2020, 243, 106901. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef]
- Almeida, M.; Silva, T.; Solstad, R.G.; Lillebø, A.I.; Calado, R.; Vieira, H. How Significant Are Marine Invertebrate Collagens? Exploring Trends in Research and Innovation. Mar. Drugs 2025, 23, 2. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, P.G.; Suh, J.H.; Pegg, R.B.; Chen, J.; Mis Solval, K. The Emergence of Jellyfish Collagen: A Comprehensive Review on Research Progress, Industrial Applications, and Future Opportunities. Trends Food Sci. Technol. 2023, 141, 104206. [Google Scholar] [CrossRef]
- Addad, S.; Exposito, J.Y.; Faye, C.; Ricard-Blum, S.; Lethias, C. Isolation, Characterization and Biological Evaluation of Jellyfish Collagen for Use in Biomedical Applications. Mar. Drugs 2011, 9, 967–983. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers 2021, 13, 3868. [Google Scholar] [CrossRef]
- Lin, K.; Zhang, D.; Macedo, M.H.; Cui, W.; Sarmento, B.; Shen, G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv. Funct. Mater. 2019, 29, 1804943. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef]
- Gelse, K. ; Pöschl, E; Aigner, T Collagens—Structure, Function, and Biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.P.; Domingos, M.; Richardson, S.M.; Bella, J. Characterization of the Biophysical Properties and Cell Adhesion Interactions of Marine Invertebrate Collagen from Rhizostoma Pulmo. Marine Drugs 2023, 21, 59. [Google Scholar] [CrossRef]
- Frank, U.; Rinkevich, B. Scyphozoan Jellyfish’s Mesoglea Supports Attachment, Spreading and Migration of Anthozoans’ Cells in Vitro. Cell Biol. Int. 1999, 23, 307–311. [Google Scholar] [CrossRef]
- Mills, C.E. Density Is Altered in Hydromedusae and Ctenophores in Response to Changes in Salinity. Biol. Bull. 1984, 166, 206–215. [Google Scholar] [CrossRef]
- Morandini, A.C. Morphology of Rhizostomeae Jellyfishes: What Is Known and What We Advanced since the 1970s. In Advances in Marine Biology; Elsevier, 2024; Vol. 98, pp. 61–97 ISBN 978-0-443-29646-8.
- Acuña, J.L.; López-Urrutia, Á.; Colin, S. Faking Giants: The Evolution of High Prey Clearance Rates in Jellyfishes. Science 2011, 333, 1627–1629. [Google Scholar] [CrossRef]
- Schmid, V. The Transformational Potential of Striated Muscle in Hydromedusae. Dev. Biol. 1976, 49, 508–517. [Google Scholar] [CrossRef]
- Sinigaglia, C.; Peron, S.; Eichelbrenner, J.; Chevalier, S.; Steger, J.; Barreau, C.; Houliston, E.; Leclère, L. Pattern Regulation in a Regenerating Jellyfish. eLife 2020, 9, e54868. [Google Scholar] [CrossRef] [PubMed]
- Morishige, H.; Sugahara, T.; Nishimoto, S.; Muranaka, A.; Ohno, F.; Shiraishi, R.; Doi, M. Immunostimulatory Effects of Collagen from Jellyfish in Vivo. Cytotechnology 2011, 63, 481–492. [Google Scholar] [CrossRef]
- Brotz, L.; Angel, D.L.; D’Ambra, I.; Enrique-Navarro, A.; Lauritano, C.; Thibault, D.; Prieto, L. Rhizostomes as a Resource: The Expanding Exploitation of Jellyfish by Humans. In Advances in Marine Biology; Elsevier, 2024; Vol. 98, pp. 511–547 ISBN 978-0-443-29646-8.
- Straehler-Pohl, I.; Widmer, C.L.; Morandini, A.C. Characterizations of Juvenile Stages of Some Semaeostome Scyphozoa (Cnidaria), with Recognition of a New Family (Phacellophoridae). Zootaxa 2011, 1–37. [Google Scholar] [CrossRef]
- Ballesteros, A.; Östman, C.; Santín, A.; Marambio, M.; Narda, M.; Gili, J.-M. Cnidome and Morphological Features of Pelagia Noctiluca (Cnidaria: Scyphozoa) throughout the Different Life Cycle Stages. Front. Mar. Sci. 2021, 8, 1059–1059. [Google Scholar] [CrossRef]
- Straehler-Pohl, I.; Jarms, G. Identification Key for Young Ephyrae: A First Step for Early Detection of Jellyfish Blooms. Hydrobiologia 2010, 645, 3–21. [Google Scholar] [CrossRef]
- Schiariti, A.; Holst, S.; Tiseo, G.R.; Miyake, H.; Morandini, A.C. Life Cycles and Reproduction of Rhizostomeae. In Advances in Marine Biology; Elsevier, 2024; Vol. 98, pp. 193–254 ISBN 978-0-443-29646-8.
- Helm, R.R. Evolution and Development of Scyphozoan Jellyfish. Biol. Rev. 2018, 93, 1228–1250. [Google Scholar] [CrossRef]
- Fuentes, V.; Straehler-Pohl, I.; Atienza, D.; Franco, I.; Tilves, U.; Gentile, M.; Acevedo, M.; Olariaga, A.; Gili, J.M. Life Cycle of the Jellyfish Rhizostoma Pulmo (Scyphozoa: Rhizostomeae) and Its Distribution, Seasonality and Inter-Annual Variability along the Catalan Coast and the Mar Menor (Spain, NW Mediterranean). Mar. Biol. 2011, 158, 2247–2266. [Google Scholar] [CrossRef]
- Kienberger, K.; Riera-Buch, M.; Schönemann, A.M.; Bartsch, V.; Halbauer, R.; Prieto, L. First Description of the Life Cycle of the Jellyfish Rhizostoma Luteum (Scyphozoa: Rhizostomeae). PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Schiariti, A.; Morandini, A.C.; Jarms, G.; Von Glehn Paes, R.; Franke, S.; Mianzan, H. Asexual Reproduction Strategies and Blooming Potential in Scyphozoa. Mar. Ecol. Prog. Ser. 2014, 510, 241–253. [Google Scholar] [CrossRef]
- Heins, A.; Glatzel, T.; Holst, S. Revised Descriptions of the Nematocysts and the Asexual Reproduction Modes of the Scyphozoan Jellyfish Cassiopea Andromeda (Forskål, 1775). Zoomorphology 2015, 134, 351–366. [Google Scholar] [CrossRef]
- Straehler-Pohl, I.; Jarms, G. Back to the Roots, Part 2—Rhopaliophora (Scyphozoa, Cubozoa and Staurozoa) Reborn Based on Early Life Cycle Data. Plankton Benthos Res. 2022, 17, 105–126. [Google Scholar] [CrossRef]
- Straehler-Pohl, I.; Jarms, G. Back to the Roots, Part 1—Early Life Cycle Data of Rhopaliophora (Scyphozoa, Cubozoa and Staurozoa). Plankton Benthos Res. 2022, 17, 1–33. [Google Scholar] [CrossRef]
- Coll, M.; Piroddi, C.; Albouy, C.; Ben Rais Lasram, F.; Cheung, W.W.L.; Christensen, V.; Karpouzi, V.S.; Guilhaumon, F.; Mouillot, D.; Paleczny, M.; et al. The Mediterranean Sea under Siege: Spatial Overlap between Marine Biodiversity, Cumulative Threats and Marine Reserves. Glob. Ecol. Biogeogr. 2012, 21, 465–480. [Google Scholar] [CrossRef]
- Mariottini, G.L.; Pane, L. Mediterranean Jellyfish Venoms: A Review on Scyphomedusae. Mar. Drugs 2010, 8, 1122–1152. [Google Scholar] [CrossRef]
- Marambio, M.; Canepa, A.; Lòpez, L.; Gauci, A.A.; Gueroun, S.K.M.; Zampardi, S.; Boero, F.; Yahia, O.K.-D.; Yahia, M.N.D.; Fuentes, V.; et al. Unfolding Jellyfish Bloom Dynamics along the Mediterranean Basin by Transnational Citizen Science Initiatives. Diversity 2021, 13, 274. [Google Scholar] [CrossRef]
- Leoni, V.; Bonnet, D.; Ramírez-Romero, E.; Molinero, J.C. Biogeography and Phenology of the Jellyfish Rhizostoma Pulmo (Cnidaria: Scyphozoa) in Southern European Seas. Glob. Ecol. Biogeogr. 2021, 30, 622–639. [Google Scholar] [CrossRef]
- Kikinger, R. Cotylorhiza Tuberculata (Cnidaria: Scyphozoa) - Life History of a Stationary Population. Mar. Ecol. 1992, 13, 333–362. [Google Scholar] [CrossRef]
- İşinibilir, M.; Yüksel, E; Dalyan, C. First Record of Cotylorhiza Tuberculata (Macri, 1778) from the Sea of Marmara. Aquat. Sci. Eng. [CrossRef]
- Aouititen, M.; Ravibhanu, A.; Ang, S.C.; Mouanda, D.C.M.; Luan, X. New Records of Two Jellyfish Species Rhizostoma Luteum (Quoy and Gaimard 1827) and Cotylorhiza Tuberculata (Macri 1778) in the Moroccan Northwest Mediterranean Coast. Discov Life 2024, 54, 5. [Google Scholar] [CrossRef]
- Lotan, A.; Ben-Hillel, R.; Loya, Y. Life Cycle of Rhopilema Nomadica: A New Immigrant Scyphomedusan in the Mediterranean. Marine Biology 1992, 112, 237–242. [Google Scholar] [CrossRef]
- Galil, B.S. A Sea under Siege – Alien Species in the Mediterranean. Biol. Invasions 2020, 2, 177–186. [Google Scholar] [CrossRef]
- Kuplik, Z.; Kerem, D.; Angel, D.L. Respiration Rates, Metabolic Demands and Feeding of Ephyrae and Young Medusae of the Rhizostome Rhopilema Nomadica. Diversity 2021, 13, 320. [Google Scholar] [CrossRef]
- You, K.; Ma, C.; Gao, H.; Li, F.; Zhang, M.; Qiu, Y.; Wang, B. Research on the Jellyfish (Rhopilema Esculentum Kishinouye) and Associated Aquaculture Techniques in China: Current Status. Aquacult. Int. 2007, 15, 479–488. [Google Scholar] [CrossRef]
- Kienberger, K.; Prieto, L. The Jellyfish Rhizostoma Luteum (Quoy & Gaimard, 1827): Not Such a Rare Species after All. Mar. Biodivers. 2018, 48, 1455–1462. [Google Scholar] [CrossRef]
- Fernández-Alías, A.; Quispe-Becerra, J.I.; Conde-Caño, M.R.; Marcos, C.; Pérez-Ruzafa, A. Mediterranean Biogeography, Colonization, Expansion, Phenology, and Life Cycle of the Invasive Jellyfish Phyllorhiza Punctata von Lendenfeld, 1884. Estuar. Coast. Shelf Sci. 2024, 299, 108699. [Google Scholar] [CrossRef]
- Calejo, M.T.; Morais, Z.B.; Fernandes, A.I. Isolation and Biochemical Characterisation of a Novel Collagen from Catostylus Tagi. J. Biomater. Sci. Polym. Ed. 2009, 20, 2073–2087. [Google Scholar] [CrossRef]
- James, S.; Tilvi, S.; Khandeparker, R.; Sreepada, R.A.; Thakur, N.; Gauthankar, M. Jellyfish Rhizostoma Pulmo Collected off Goa Coast (India) as a Rich Source of Tryptophan Containing Collagen and Its Enhanced Antioxidant Potential. J. Food Sci. Technol. 2023, 60, 2825–2834. [Google Scholar] [CrossRef]
- Khong, N.M.H.; Yusoff, F.M.; Jamilah, B.; Basri, M.; Maznah, I.; Chan, K.W.; Armania, N.; Nishikawa, J. Improved Collagen Extraction from Jellyfish (Acromitus Hardenbergi) with Increased Physical-Induced Solubilization Processes. Food Chem. 2018, 251, 41–50. [Google Scholar] [CrossRef]
- Rastian, Z.; Pütz, S.; Wang, Y.; Kumar, S.; Fleissner, F.; Weidner, T.; Parekh, S.H. Type I Collagen from Jellyfish Catostylus Mosaicus for Biomaterial Applications. ACS Biomater. Sci. Eng. 2018, 4, 2115–2125. [Google Scholar] [CrossRef]
- Barzkar, N.; Sukhikh, S.; Zhikhreva, A.; Cheliubeeva, E.; Kapitunova, A.; Malkov, D.; Babich, O.; Kulikova, Y. Aurelia Aurita Jellyfish Collagen: Recovery Properties. Foods Raw Mater. 2024, 296–305. [Google Scholar] [CrossRef]
- Gorbatenko, K.M.; Nikolayev, A.V.; Figurkin, A.L.; Il’inskii, E.N. Quantitative Composition, Distribution, and Feeding of Large Jellyfish (Scyphozoa et Hydrozoa) on the West Kamchatka Shelf in Summer. Russ J Mar Biol 2009, 35, 579–592. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, R.; Huang, L.; Song, Y.; Regenstein, J.M. Characterisation of Acid-Soluble and Pepsin-Solubilised Collagen from Jellyfish (Cyanea Nozakii Kishinouye). Food Chemistry 2014, 150, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Balikci, E.; Baran, E.T.; Tahmasebifar, A.; Yilmaz, B. Characterization of Collagen from Jellyfish Aurelia Aurita and Investigation of Biomaterials Potentials. Appl. Biochem. Biotechnol. 2024, 196, 6200–6221. [Google Scholar] [CrossRef]
- Cheng, X.; Shao, Z.; Li, C.; Yu, L.; Raja, M.A.; Liu, C. Isolation, Characterization and Evaluation of Collagen from Jellyfish Rhopilema Esculentum Kishinouye for Use in Hemostatic Applications. PloS ONE 2017, 12, e0169731. [Google Scholar] [CrossRef]
- Nagai, T.; Worawattanamateekul, W.; Suzuki, N.; Nakamura, T.; Ito, T.; Fujiki, K.; Nakao, M.; Yano, T. Isolation and Characterization of Collagen from Rhizostomous Jellyfish (Rhopilema Asamushi). Food Chem. 2000, 70, 205–208. [Google Scholar] [CrossRef]
- Shaik, M.I.; Rahman, S.H.A.; Yusri, A.S.; Ismail-Fitry, M.R.; Kumar, N.S.S.; Sarbon, N.M. A Review on the Processing Technique, Physicochemical, and Bioactive Properties of Marine Collagen. J. Food Sci. 2024, 89, 5205–5229. [Google Scholar] [CrossRef]
- Sudirman, S.; Chen, C.-Y.; Chen, C.-K.; Felim, J.; Kuo, H.-P.; Kong, Z.-L. Fermented Jellyfish (Rhopilema Esculentum) Collagen Enhances Antioxidant Activity and Cartilage Protection on Surgically Induced Osteoarthritis in Obese Rats. Front. Pharmacol. 2023, 14, 1117893. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Hou, H.; Zhao, X.; Zhang, Z.; Li, B. Effects of Collagen and Collagen Hydrolysate from Jellyfish (Rhopilema Esculentum) on Mice Skin Photoaging Induced by UV Irradiation. J. Food Sci. 2009, 74, H183–H188. [Google Scholar] [CrossRef]
- Morelli, S.; D’Amora, U.; Piscioneri, A.; Oliviero, M.; Scialla, S.; Coppola, A.; De Pascale, D.; Crocetta, F.; De Santo, M.P.; Davoli, M.; et al. Methacrylated Chitosan/Jellyfish Collagen Membranes as Cell Instructive Platforms for Liver Tissue Engineering. Int. J. Biol. Macromol. 2024, 281, 136313. [Google Scholar] [CrossRef]
- Fassini, D.; Wilkie, I.C.; Pozzolini, M.; Ferrario, C.; Sugni, M.; Rocha, M.S.; Giovine, M.; Bonasoro, F.; Silva, T.H.; Reis, R.L. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules 2021, 22, 1815–1834. [Google Scholar] [CrossRef]
- Farooq, S.; Ahmad, M.I.; Zheng, S.; Ali, U.; Li, Y.; Shixiu, C.; Zhang, H. A Review on Marine Collagen: Sources, Extraction Methods, Colloids Properties, and Food Applications. Collagen & Leather 2024, 6, 11. [Google Scholar] [CrossRef]
- Song, E.; Yeon Kim, S.; Chun, T.; Byun, H.-J.; Lee, Y.M. Collagen Scaffolds Derived from a Marine Source and Their Biocompatibility. Biomaterials 2006, 27, 2951–2961. [Google Scholar] [CrossRef]
- Prajaputra, V.; Isnaini, N.; Maryam, S.; Ernawati, E.; Deliana, F.; Haridhi, H.A.; Fadli, N.; Karina, S.; Agustina, S.; Nurfadillah, N.; et al. Exploring Marine Collagen: Sustainable Sourcing, Extraction Methods, and Cosmetic Applications. South Afr. J. Chem. Eng. 2024, 47, 197–211. [Google Scholar] [CrossRef]
- Lu, W.-C.; Chiu, C.-S.; Chan, Y.-J.; Mulio, A.T.; Li, P.-H. Characterization and Biological Properties of Marine By-Product Collagen through Ultrasound-Assisted Extraction. Aquaculture Reports 2023, 29, 101514. [Google Scholar] [CrossRef]
- Barros, A.A.; Aroso, I.M.; Silva, T.H.; Mano, J.F.; Duarte, A.R.C.; Reis, R.L. Water and Carbon Dioxide: Green Solvents for the Extraction of Collagen/Gelatin from Marine Sponges. ACS Sustainable Chem. Eng. 2015, 3, 254–260. [Google Scholar] [CrossRef]
- Silva, J.C.; Barros, A.A.; Aroso, I.M.; Fassini, D.; Silva, T.H.; Reis, R.L.; Duarte, A.R.C. Extraction of Collagen/Gelatin from the Marine Demosponge Chondrosia Reniformis (Nardo, 1847) Using Water Acidified with Carbon Dioxide – Process Optimization. Ind. Eng. Chem. Res. 2016, 55, 6922–6930. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Bisht, M.; Martins, M.; V. Dias, A.C.R.; M. Ventura, S.P.; P. Coutinho, J.A. Uncovering the Potential of Aqueous Solutions of Deep Eutectic Solvents on the Extraction and Purification of Collagen Type I from Atlantic Codfish (Gadus Morhua ). Green Chem. 2021, 23, 8940–8948. [Google Scholar] [CrossRef]
- Batista, M.P.; Fernández, N.; Gaspar, F.B.; Bronze, M. do R.; Duarte, A.R.C. Extraction of Biocompatible Collagen From Blue Shark Skins Through the Conventional Extraction Process Intensification Using Natural Deep Eutectic Solvents. Front. Chem. 2022, 10. [Google Scholar] [CrossRef]
- Raposo, A.; Alasqah, I.; Alfheeaid, H.; Alsharari, Z.; Alturki, H.; Raheem, D. Jellyfish as Food: A Narrative Review. Foods 2022, 11, 2773. [Google Scholar] [CrossRef]
- De Domenico, S.; De Rinaldis, G.; Paulmery, M.; Piraino, S.; Leone, A. Barrel Jellyfish (Rhizostoma Pulmo) as Source of Antioxidant Peptides. Mar. Drugs 2019, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Lecci, R.; Durante, M.; Meli, F.; Piraino, S. The Bright Side of Gelatinous Blooms: Nutraceutical Value and Antioxidant Properties of Three Mediterranean Jellyfish (Scyphozoa). Mar. Drugs 2015, 13, 4654–4681. [Google Scholar] [CrossRef] [PubMed]
- Prieto, L.; Enrique-Navarro, A.; Li Volsi, R.; Ortega, M. The Large Jellyfish Rhizostoma Luteum as Sustainable a Resource for Antioxidant Properties, Nutraceutical Value and Biomedical Applications. Mar. Drugs 2018, 16, 396. [Google Scholar] [CrossRef]
- Alkayali, A. Hydrolyzed Jellyfish Collagen Types I, II, and V and Use Thereof 2019.
- Omori, M.; Nakano, E. Jellyfish Fisheries in Southeast Asia. In Jellyfish Blooms: Ecological and Societal Importance; Purcell, J.E., Graham, W.M., Dumont, H.J., Eds.; Springer Netherlands: Dordrecht, 2001; pp. 19–26 ISBN 978-94-010-3835-5.
- Brotz, L.; Schiariti, A.; López-Martínez, J.; Álvarez-Tello, J.; Peggy Hsieh, Y.-H.; Jones, R.P.; Quiñones, J.; Dong, Z.; Morandini, A.C.; Preciado, M.; et al. Jellyfish Fisheries in the Americas: Origin, State of the Art, and Perspectives on New Fishing Grounds. Rev. Fish Biol. Fisheries 2017, 27, 1–29. [Google Scholar] [CrossRef]
- Brotz, L Jellyfish Fisheries in the World, The University of British Columbia: Vancouver, 2016.
- Kumawat, T.; Saravanan, R.; Vinod, K.; Jaiswar, A.K.; Deshmukhe, G.; Shenoy, L.; Divu, D.; Joshi, K.K.; Gopalakrishnan, A. Jellyfish Fisheries along the Gujarat Coast, India: Status and Challenges. Mar. Policy 2023, 150, 105554. [Google Scholar] [CrossRef]
- Nishikawa, J.; Thu, N.T.; Ha, T.M.; Thu, P.T. Jellyfish Fisheries in Northern Vietnam. Plankton Benthos Res 2008, 3, 227–234. [Google Scholar] [CrossRef]
- Torri, L; Tuccillo, F; Bonelli, S; Piraino, S; Leone, A. The Attitudes of Italian Consumers towards Jellyfish as Novel Food. Food Qual. Prefer. 2020, 79, 103782. [Google Scholar] [CrossRef]
- Leone, A.; Lecci, R.M.; Milisenda, G.; Piraino, S. Mediterranean Jellyfish as Novel Food: Effects of Thermal Processing on Antioxidant, Phenolic, and Protein Contents. Eur. Food Res. Technol. 2019, 245, 1611–1627. [Google Scholar] [CrossRef]
- Leone, A. European Jellyfish Cookbook - Prime Ricette a Base Di Meduse in Stile Occidentale; ©️ Cnr Edizioni, 2020: IT, 2020; ISBN 978-88-8080-395-9.
- Jadach, B.; Mielcarek, Z.; Osmałek, T. Use of Collagen in Cosmetic Products. Curr. Issues Mol. Biol. 2024, 46, 2043–2070. [Google Scholar] [CrossRef]
- Amirrah, I.N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M.F.M.R.; Motta, A.; Fauzi, M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022, 10, 2307. [Google Scholar] [CrossRef]
- Ahmed, Z.; Powell, L.C.; Matin, N.; Mearns-Spragg, A.; Thornton, C.A.; Khan, I.M.; Francis, L.W. Jellyfish Collagen: A Biocompatible Collagen Source for 3d Scaffold Fabrication and Enhanced Chondrogenicity. Mar. Drugs 2021, 19. [Google Scholar] [CrossRef]
- Cadar, E.; Pesterau, A.-M.; Sirbu, R.; Negreanu-Pirjol, B.S.; Tomescu, C.L. Jellyfishes—Significant Marine Resources with Potential in the Wound-Healing Process: A Review. Mar. Drugs 2023, 21, 201. [Google Scholar] [CrossRef] [PubMed]
- Rachmawati, R.; Hidayat, M.; Permatasari, N.; Widyarti, S. Jellyfish (Aurelia Aurita) Collagen Scaffolds Potential in Alveolar Bone Regeneration. F1000Res 2021, 10, 318. [Google Scholar] [CrossRef]
- Widdowson, J.P.; Picton, A.J.; Vince, V.; Wright, C.J.; Mearns-Spragg, A. In Vivo Comparison of Jellyfish and Bovine Collagen Sponges as Prototype Medical Devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1524–1533. [Google Scholar] [CrossRef]
- Paradiso, F.; Fitzgerald, J.; Yao, S.; Barry, F.; Taraballi, F.; Gonzalez, D.; Conlan, R.S.; Francis, L. Marine Collagen Substrates for 2D and 3D Ovarian Cancer Cell Systems. Front. Bioeng. Biotechnol. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Flaig, I.; Radenković, M.; Najman, S.; Pröhl, A.; Jung, O.; Barbeck, M. In Vivo Analysis of the Biocompatibility and Immune Response of Jellyfish Collagen Scaffolds and Its Suitability for Bone Regeneration. Int. J. Mol. Sci. 2020, 21, 1–25. [Google Scholar] [CrossRef]
- Mearns-Spragg, A.; Tilman, J.; Tams, D.; Barnes, A. The Biological Evaluation of Jellyfish Collagen as a New Research Tool for the Growth and Culture of iPSC Derived Microglia. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Riacci, L.; Sorriento, A.; Ricotti, L. Genipin-Based Crosslinking of Jellyfish Collagen 3D Hydrogels. Gels 2021, 7, 238. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cervantes, I.; Rodríguez-Fuentes, N.; León-Deniz, L.V.; Alcántara Quintana, L.E.; Cervantes-Uc, J.M.; Herrera Kao, W.A.; Cerón-Espinosa, J.D.; Cauich-Rodríguez, J.V.; Castaño-Meneses, V.M. Cell-Free Scaffold from Jellyfish Cassiopea Andromeda (Cnidaria; Scyphozoa) for Skin Tissue Engineering. Mater. Sci. Eng. C 2020, 111. [Google Scholar] [CrossRef]
- León-Campos, M.I.; Claudio-Rizo, J.A.; Rodriguez-Fuentes, N.; Cabrera-Munguía, D.A.; Becerra-Rodriguez, J.J.; Herrera-Guerrero, A.; Soriano-Corral, F. Biocompatible Interpenetrating Polymeric Networks in Hydrogel State Comprised from Jellyfish Collagen and Polyurethane. J. Polym. Res. 2021, 28, 291. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Sarhan, E.M.; Ibrahim, A.A.; Abo-Elwafa, A.H.; Yahia, A.M.; Salah, A.; Maher, R.M.; Wagdy, M.; El-Sherbeny, G.A.; El-Sawah, A.A. One-Step Green Synthesis of Collagen Nanoparticles Using Ulva Fasciata, Network Pharmacology and Functional Enrichment Analysis in Hepatocellular Carcinoma Treatment. Int. J. Biol. Macromol. 2025, 294, 139244. [Google Scholar] [CrossRef] [PubMed]
- Charoenchokpanich, W.; Muangrod, P.; Roytrakul, S.; Rungsardthong, V.; Wonganu, B.; Charoenlappanit, S.; Casanova, F.; Thumthanaruk, B. Exploring the Model of Cefazolin Released from Jellyfish Gelatin-Based Hydrogels as Affected by Glutaraldehyde. Gels 2024, 10, 271. [Google Scholar] [CrossRef] [PubMed]
- Calejo, M.T; Almeida, A.J; Fernandes, A.I. Exploring a New Jellyfish Collagen in the Production of Microparticles for Protein Delivery. J. Microencapsul. 2012, 29, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Arslan, Y.E.; Sezgin Arslan, T.; Derkus, B.; Emregul, E.; Emregul, K.C. Fabrication of Human Hair Keratin/Jellyfish Collagen/Eggshell-Derived Hydroxyapatite Osteoinductive Biocomposite Scaffolds for Bone Tissue Engineering: From Waste to Regenerative Medicine Products. Colloids Surf. B Biointerfaces 2017, 154, 160–170. [Google Scholar] [CrossRef]
- Alkildani, S.; Jung, O.; Barbeck, M. In Vitro Investigation of Jellyfish Collagen as a Tool in Cell Culture and (Bone) Tissue Engineering. Anticancer Res. 2021, 41, 707–717. [Google Scholar] [CrossRef]
- Carvalho, D.N.; Williams, D.S.; Sotelo, C.G.; Pérez-Martín, R.I.; Mearns-Spragg, A.; Reis, R.L.; Silva, T.H. Marine Origin Biomaterials Using a Compressive and Absorption Methodology as Cell-Laden Hydrogel Envisaging Cartilage Tissue Engineering. Biomater. Adv. 2022, 137, 212843. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, L.; Xiong, X.; Krastev, R.; Smeets, R.; Rimashevskiy, D.; Schnettler, R.; Alkildani, S.; Emmert, S.; Jung, O.; et al. Suitability of R. Pulmo Jellyfish-Collagen-Coated Well Plates for Cytocompatibility Analyses of Biomaterials. Int. J. Mol. Sci. 2023, 24, 3007. [Google Scholar] [CrossRef]
- Rigogliuso, S.; Salamone, M.; Barbarino, E.; Barbarino, M.; Nicosia, A.; Ghersi, G. Production of Injectable Marine Collagen-Based Hydrogel for the Maintenance of Differentiated Chondrocytes in Tissue Engineering Applications. International Journal of Molecular Sciences 2020, 21, 5798. [Google Scholar] [CrossRef]
- Salthouse, D.; Goulding, P.D.; Reay, S.L.; Jackson, E.L.; Xu, C.; Ahmed, R.; Mearns-Spragg, A.; Novakovic, K.; Hilkens, C.M.U.; Ferreira, A.M. Amine-Reactive Crosslinking Enhances Type 0 Collagen Hydrogel Properties for Regenerative Medicine. Front. Bioeng. Biotechnol. 2024, 12. [Google Scholar] [CrossRef]
- León-Campos, M.I.; Rodríguez-Fuentes, N.; Claudio-Rizo, J.A.; Cabrera-Munguía, D.A.; Becerra-Rodríguez, J.J.; Herrera-Guerrero, A.; Soriano-Corral, F.; Alcántara-Quintana, L.E. Development and in Vitro Evaluation of a Polymeric Matrix of Jellyfish Collagen-Human Stem Cell Secretome-Polyurethane for Wound Healing. J. Mater. Sci. 2023, 58, 8047–8060. [Google Scholar] [CrossRef]
- Brotz, L.; Cisneros-Montemayor, A.M.; Cisneros-Mata, M.Á. The Race for Jellyfish: Winners and Losers in Mexico’s Gulf of California. Mar. Policy 2021, 134, 104775. [Google Scholar] [CrossRef]
- María Esther, C.-C.; Miguel Ángel, C.-M.; Gabriela, M.-M.; Ileana, E.; Andrés Miguel, C.-M.; Luis, M.-C. Analysis of the Gulf of California Cannonball Jellyfish Fishery as a Complex System. Ocean Coast. Manag. 2021, 207, 105610. [Google Scholar] [CrossRef]
- Kitamura, M.; Omori, M. Synopsis of Edible Jellyfishes Collected from Southeast Asia, with Notes on Jellyfish Fisheries. Plankton Benthos Res. 2010, 5, 106–118. [Google Scholar] [CrossRef]
- Behera, P.R.; Raju, S.S.; Jishnudev, M.A.; Ghosh, S.; Saravanan, R. Emerging Jellyfish Fisheries along Central South East Coast of India. Ocean Coast. Manag. 2020, 191, 105183. [Google Scholar] [CrossRef]
- Jia, C.; Fujimori, Y.; Wang, X.; Guan, C. Performance of Large-Scale Stow Nets for Investigating Jellyfish. Fish Sci. 2023, 89, 595–603. [Google Scholar] [CrossRef]
- Edelist, D.; Angel, D.L.; Canning-Clode, J.; Gueroun, S.K.M.; Aberle, N.; Javidpour, J.; Andrade, C. Jellyfishing in Europe: Current Status, Knowledge Gaps, and Future Directions towards a Sustainable Practice. Sustainability 2021. [Google Scholar] [CrossRef]
- Elliott, A.; Hobson, V.; Tang, K.W. Balancing Fishery and Conservation: A Case Study of the Barrel Jellyfish Rhizostoma Octopus in South Wales. ICES J. Mar. Sci. 2017, 74, 234–241. [Google Scholar] [CrossRef]
- Jellagen. Available online: https://jellagen.co.uk/ (accessed on 3 March 2025).
- You, K.; Bian, Y.; Ma, C.; Chi, X.; Liu, Z.; Zhang, Y. Study on the Carry Capacity of Edible Jellyfish Fishery in Liaodong Bay. J. Ocean Univ. China 2016, 15, 471–479. [Google Scholar] [CrossRef]
- Mghili, B.; Analla, M.; Aksissou, M. Estimating the Economic Damage Caused by Jellyfish to Fisheries in Morocco. Afr. J. Mar. Sci. 2022, 44, 271–277. [Google Scholar] [CrossRef]
- Palmieri, M.G.; Barausse, A.; Luisetti, T.; Turner, K. Jellyfish Blooms in the Northern Adriatic Sea: Fishermen’s Perceptions and Economic Impacts on Fisheries. Fish. Res. 2014, 155, 51–58. [Google Scholar] [CrossRef]
- Conley, K.R.; Sutherland, K.R. Commercial Fishers’ Perceptions of Jellyfish Interference in the Northern California Current. ICES J. Mar. Sci. 2015, 72, 1565–1575. [Google Scholar] [CrossRef]
- D’Ambra, I.; Merquiol, L. Jellyfish from Fisheries By-Catches as a Sustainable Source of High-Value Compounds with Biotechnological Applications. Mar. Drugs 2022, 20, 266. [Google Scholar] [CrossRef] [PubMed]
- COLMED: Colágeno de Medusas, Un Recurso Marino Innovador Del Mediterráneo En Biotecnología Azul | Pleamar Available online:. Available online: https://www.programapleamar.es/proyectos/colmed-colageno-de-medusas-un-recurso-marino-innovador-del-mediterraneo-en-biotecnologia (accessed on 3 March 2025).
- Fernández-Alías, A.; Marcos, C.; Pérez-Ruzafa, A. The Unpredictability of Scyphozoan Jellyfish Blooms. Front. Mar. Sci. 2024, 11. [Google Scholar] [CrossRef]
- Purcell, J.E.; Baxter, E.J.; Fuentes, V.L. Jellyfish as Products and Problems of Aquaculture. In Advances in Aquaculture Hatchery Technology; Elsevier, 2013; pp. 404–430 ISBN 978-0-85709-119-2.
- Duarte, I.M.; Marques, S.C.; Leandro, S.M.; Calado, R. An Overview of Jellyfish Aquaculture: For Food, Feed, Pharma and Fun. Rev. Aquaculture 2022, 14, 265–287. [Google Scholar] [CrossRef]
- Ballesteros, A.; Páez, D.; Santín, A.; García, A.; Martín, Y.; Alonso, E.; Jourdan, E.; Gili, J.-M. Successful Culture of Pelagia Noctiluca (Cnidaria: Scyphozoa) Over Time: A Continuous Supply of the Holoplanktonic Jellyfish for Research and Industrial Applications. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- De Domenico, S.; Toso, A.; De Rinaldis, G.; Mammone, M.; Fumarola, L.M.; Piraino, S.; Leone, A. Wild or Reared? Cassiopea Andromeda Jellyfish as a Potential Biofactory. Mar. Drugs 2025, 23, 19. [Google Scholar] [CrossRef]
- Dong, J.; Jiang, L.; Tan, K.; Liu, H.; Purcell, J.E.; Li, P.; Ye, C. Stock Enhancement of the Edible Jellyfish (Rhopilema Esculentum Kishinouye) in Liaodong Bay, China: A Review. Hydrobiologia 2009, 616, 113–118. [Google Scholar] [CrossRef]
- Yang, S-Q; Zhang, W-C. he cultural technique of jellyfish. Fish Sci. 2004, 23, 25–26. [Google Scholar]
- JellyFarmer. Available online: https://jellyfarmer.com/ (accessed on 16 January 2025).
- Ballesteros, A.; Siles, P.; Jourdan, E.; Gili, J.-M. Versatile Aquarium for Jellyfish: A Rearing System for the Biomass Production of Early Life Stages in Flow-through or Closed Systems. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Duarte, I.; Leandro, S.; Ferreira, M.; Pinto, C.; Marques, D.; Falcão, J.; Maranhão, P.; Marques, S. Effect of Diet on Growth and Development of the Jellyfish Phyllorhiza Punctata (Cnidaria, Scyphozoa) in Laboratory Conditions. In Proceedings of the Frontiers in Marine Science; Frontiers Media SA, 2019; Vol. 6.
- Raskoff, K.A.; Sommer, F.A.; Hamner, W.M.; Cross, K.M. Collection and Culture Techniques for Gelatinous Zooplankton. Biol. Bull. 2003, 204, 68–80. [Google Scholar] [CrossRef]
- Crow, G.; Howard, M.; Levesque, V.; Matsushige, L.; Spina, S.; Schaadt, M.; Sowinski, N.; Widmer, C.; Upton, B. ; Authors; et al. Association of Zoos and Aquariums: Jellyfish (Cnidaria/ Ctenophora) Care Manual. 2013. [CrossRef]
- Morata, D.P.M. Extraction, analysis, and use of collagen from Cassiopea spp. (Cnidaria: Scyphozoa) in biomedical applications., Catholic University of Valencia: Valencia, 2022.
- Pierce, J. A System for Mass Culture of Upside-down Jellyfish Cassiopea Spp as a Potential Food Item for Medusivores in Captivity. Int. Zoo. Yb. 2005, 39, 62–69. [Google Scholar] [CrossRef]
- Lisboa, R.; Mascarenhas, P.; Morais, Z.; Morandini, A. Catostylus Tagi: Survival and Maintenance trials of planula and polyps. Ann. Med. 2019, 52, 78. [Google Scholar] [CrossRef]
- Gueroun, S.K.; Torres, T.M.; Dos Santos, A.; Vasco-Rodrigues, N.; Canning-Clode, J.; Andrade, C. Catostylus Tagi (Class: Scyphozoa, Order: Discomedusae, Suborder: Rhizostomida, Family: Catostylidae) Life Cycle and First Insight into Its Ecology. PeerJ. 2021, 9, e12057. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).



























