Submitted:
25 March 2025
Posted:
27 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Background
2.1. Foundation Models and Transfer Learning
2.2. Challenges of Full Fine-Tuning
- Computational Complexity: Large foundation models contain billions of parameters, making full fine-tuning computationally expensive and requiring high-end hardware resources such as TPUs or GPUs [25].
- Memory Constraints: Storing multiple fine-tuned versions of a foundation model for different tasks leads to excessive memory consumption, limiting scalability in real-world applications.
- Catastrophic Forgetting: When fine-tuning on new tasks, models often overwrite previously learned knowledge, hindering their ability to retain general capabilities [26].
- Deployment Challenges: Fine-tuned models must be stored separately for each task, increasing the cost of deployment and maintenance, particularly in edge computing scenarios [27].
2.3. Parameter-Efficient Fine-Tuning: A New Paradigm
- Reduced Computational Cost: By fine-tuning only a fraction of the model’s parameters, PEFT methods lower the training cost, enabling adaptation on resource-constrained devices [32].
- Improved Storage Efficiency: Since PEFT methods require storing only a small number of task-specific parameters, they facilitate scalable multi-task learning and efficient model deployment.
- Modular and Reusable Components: Many PEFT methods allow task-specific modifications to be applied in a modular fashion, enabling fast adaptation to new domains without extensive retraining [33].
- Better Transferability: By preserving the majority of the pre-trained weights, PEFT techniques maintain generalization capabilities, mitigating catastrophic forgetting.
3. Taxonomy of Parameter-Efficient Fine-Tuning Methods
3.1. Adapter-Based Methods
3.1.1. Standard Adapters
3.1.2. Compacter and HyperNetwork-Based Adapters
3.2. Low-Rank Adaptation Methods
3.2.1. LoRA and Its Variants
3.3. Prompt-Based Tuning
3.3.1. Soft Prompt Tuning
3.3.2. Prefix Tuning
3.4. Selective Parameter Tuning
3.4.1. BitFit
3.4.2. Layerwise Fine-Tuning
3.5. Comparison of PEFT Methods
4. Analysis and Evaluation of PEFT Methods
4.1. Performance Across NLP and Vision Benchmarks
4.1.1. Natural Language Processing Benchmarks
4.1.2. Computer Vision Benchmarks
4.2. Computational Efficiency and Memory Footprint
4.3. Generalization and Transferability
- Adapters and LoRA exhibit strong cross-task generalization, making them ideal for multi-task and continual learning [78].
- Prompt tuning is highly effective in zero-shot and few-shot learning scenarios but may struggle in domain adaptation [79].
- BitFit works well for classification tasks but is less effective for structured prediction tasks such as dependency parsing or named entity recognition.
4.4. Summary of Key Findings
- Adapters: Strong task performance and modularity but require additional inference computation.
- LoRA: Highly efficient and effective for large models, but may require careful layer selection [80].
- Prompt Tuning: Extremely parameter-efficient but less robust for complex tasks [81].
- BitFit: Simple and effective for classification but limited in complex reasoning tasks.
5. Real-World Applications and Deployment
5.1. Natural Language Processing Applications
5.1.1. Conversational AI and Chatbots
5.1.2. Machine Translation
5.1.3. Text Summarization and Information Extraction
5.2. Computer Vision Applications
5.2.1. Medical Image Analysis
5.2.2. Autonomous Driving
5.2.3. Retail and E-commerce
5.3. Multimodal Learning and Vision-Language Models
5.3.1. Content Moderation and Hate Speech Detection
5.3.2. AI-Generated Art and Image Captioning
5.4. Edge Computing and Low-Power Devices
5.4.1. Smartphones and IoT Devices
5.4.2. On-Device Personalization
5.4.3. Industrial Automation
5.5. Deployment Considerations and Challenges
- Latency and Inference Speed: While PEFT reduces training costs, some methods (e.g., adapter-based tuning) introduce additional computational overhead at inference time [101]. Strategies such as pruning and quantization can help mitigate this issue.
- Scalability Across Tasks: PEFT enables multi-task adaptation, but managing multiple fine-tuned modules (e.g., task-specific adapters) can lead to complexity in large-scale deployments [102].
- Energy Efficiency: Reducing the number of trainable parameters lowers energy consumption, making PEFT ideal for sustainable AI development [103]. However, some methods may still require optimization for real-time applications.
5.6. Summary and Future Directions
- PEFT methods are widely used in NLP, CV, and multimodal applications, enabling efficient fine-tuning of foundation models.
- Edge computing benefits significantly from PEFT by enabling AI-driven applications on resource-constrained devices.
- Deployment challenges, such as inference overhead and scalability, require further research to optimize PEFT for production use.
6. Emerging Trends and Future Directions
6.1. Advanced Low-Rank Adaptation Techniques
- Dynamic Low-Rank Updates: Instead of using a fixed low-rank decomposition, recent approaches propose dynamically adjusting the rank of adaptation matrices based on task complexity, leading to more efficient fine-tuning [110].
- Sparse Low-Rank Decomposition: Hybrid approaches that combine sparsity with low-rank updates aim to further reduce the number of trainable parameters while maintaining model expressiveness [111].
- Rank Selection Optimization: Methods such as AutoLoRA explore automatic selection of optimal rank values, reducing the need for manual hyperparameter tuning.
6.2. Meta-Learning and Dynamic Fine-Tuning
- Task-Agnostic Fine-Tuning: Instead of learning separate parameters for each task, meta-learning-based PEFT approaches enable models to generalize to unseen tasks with minimal updates [113].
- Adaptive Parameter-Freezing: Future PEFT techniques may incorporate automated freezing and unfreezing of parameters based on task complexity, optimizing the trade-off between efficiency and performance [114].
- Few-Shot and Continual Learning: Integrating PEFT with few-shot and continual learning paradigms allows models to efficiently acquire new knowledge while avoiding catastrophic forgetting.
6.3. Cross-Modal and Multilingual Adaptation
- Unified Multimodal PEFT: Research is exploring ways to integrate PEFT across vision-language, speech-text, and other multimodal domains, allowing a single fine-tuned module to operate across different inputs [115].
- Cross-Lingual Adaptation: PEFT methods that enable seamless adaptation of multilingual models across new languages, especially for low-resource settings, are gaining attention [116].
6.4. Federated and Decentralized Fine-Tuning
- Federated PEFT: Techniques such as federated LoRA allow models to be fine-tuned across decentralized devices while preserving user privacy [119].
- On-Device Adaptation: Lightweight PEFT models optimized for deployment on smartphones, IoT devices, and edge servers reduce reliance on centralized cloud computing [120].
- Privacy-Preserving Fine-Tuning: Encryption-based techniques such as homomorphic encryption and secure multi-party computation are being integrated with PEFT to ensure data security during adaptation [121].
6.5. Scalable and Hardware-Aware PEFT
- Quantized and Pruned PEFT Models: Applying quantization and pruning to PEFT methods can further reduce memory and inference costs without compromising accuracy [122].
- PEFT for Sparse Models: Sparse models such as mixture-of-experts (MoE) architectures require specialized PEFT techniques that adapt only active model components [123].
- Accelerator-Aware Fine-Tuning: Future PEFT approaches will need to optimize for hardware-specific characteristics, such as tensor core efficiency on GPUs or reduced precision arithmetic on edge AI chips.
6.6. Bridging PEFT with Neural Architecture Search
- Task-Specific PEFT Search: Automating the selection of PEFT methods based on task characteristics to optimize efficiency and accuracy [125].
- Hybrid NAS-PEFT Approaches: Exploring how NAS can guide the design of efficient adapters, LoRA layers, or prompt tuning strategies for foundation models [126].
- Energy-Efficient NAS-PEFT Pipelines: Combining NAS with PEFT to identify configurations that minimize energy consumption while maintaining high performance [127].
6.7. Challenges and Open Questions
- Optimal PEFT Selection: How can models automatically determine which PEFT method is best suited for a given task?
- Interpretability: How do PEFT modifications affect the internal representations of foundation models, and can they be made more interpretable [128]?
- Scalability to Extremely Large Models: As models surpass trillions of parameters, will current PEFT techniques remain viable, or will entirely new methods be needed [129]?
- Generalization Across Domains: Can a single PEFT module generalize across multiple domains without requiring separate fine-tuning?
6.8. Summary and Outlook
- Research is moving toward more dynamic and adaptive PEFT methods that optimize parameter selection and task generalization [130].
- Multimodal, multilingual, and federated fine-tuning approaches will expand the reach of PEFT beyond traditional NLP and vision tasks.
- Hardware-aware and NAS-integrated PEFT methods will drive new breakthroughs in efficiency and deployment scalability.
7. Conclusion
7.1. Key Takeaways
- PEFT methods such as adapters, LoRA, prefix tuning, and BitFit offer efficient alternatives to full fine-tuning, significantly reducing the number of trainable parameters while maintaining competitive performance.
- The application of PEFT extends beyond natural language processing to computer vision, multimodal learning, and edge computing, demonstrating its versatility across different AI domains.
- Real-world deployment of PEFT requires careful consideration of inference latency, scalability, energy efficiency, and privacy, motivating ongoing research in optimized architectures.
- Emerging trends such as dynamic fine-tuning, federated adaptation, and hardware-aware optimization are paving the way for more flexible and scalable PEFT strategies.
- Despite its advantages, PEFT still faces challenges related to optimal method selection, interpretability, and generalization across domains, indicating promising directions for future research.
7.2. The Future of PEFT
- Hybrid PEFT Approaches: Combining different fine-tuning techniques (e.g., LoRA with prompt tuning) to optimize both efficiency and generalization.
- Task-Agnostic Adaptation: Developing PEFT methods that allow for seamless cross-domain and cross-modal transfer without requiring extensive task-specific fine-tuning.
- Neural Architecture Search (NAS) for PEFT: Automating the discovery of optimal fine-tuning configurations tailored to specific tasks and computational constraints.
- Sustainable AI: Further reducing the carbon footprint of model adaptation through lightweight PEFT methods that minimize energy consumption.
7.3. Final Thoughts
References
- Xia, X.; Zhang, D.; Liao, Z.; Hou, Z.; Sun, T.; Li, J.; Fu, L.; Dong, Y. SceneGenAgent: Precise Industrial Scene Generation with Coding Agent. arXiv preprint arXiv:2410.21909 2024.
- Liu, Z.; Li, S.; Luo, Y.; Fei, H.; Cao, Y.; Kawaguchi, K.; Wang, X.; Chua, T. MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter. In Proceedings of the Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 2023, pp. 15623–15638.
- Marjit, S.; Singh, H.; Mathur, N.; Paul, S.; Yu, C.M.; Chen, P.Y. DiffuseKronA: A Parameter Efficient Fine-tuning Method for Personalized Diffusion Model. arXiv preprint arXiv:2402.17412 2024.
- Davison, J. Compacter: Efficient Low-Rank Hypercomplex Adapter Layers. In Proceedings of the Neural Information Processing Systems, 2021.
- Silva, A.; Fang, S.; Monperrus, M. Repairllama: Efficient representations and fine-tuned adapters for program repair. arXiv preprint arXiv:2312.15698 2023.
- Zhang, D.; Yu, Y.; Li, C.; Dong, J.; Su, D.; Chu, C.; Yu, D. Mm-llms: Recent advances in multimodal large language models. arXiv preprint arXiv:2401.13601 2024.
- Yuan, H.; Yuan, Z.; Gan, R.; Zhang, J.; Xie, Y.; Yu, S. BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model. In Proceedings of the Workshop on Biomedical Natural Language Processing, 2022.
- Lee, A.N.; Hunter, C.J.; Ruiz, N. Platypus: Quick, Cheap, and Powerful Refinement of LLMs. arXiv preprint arXiv:2308.07317 2023.
- Wu, Y.; Xiang, Y.; Huo, S.; Gong, Y.; Liang, P. LoRA-SP: streamlined partial parameter adaptation for resource efficient fine-tuning of large language models. In Proceedings of the Third International Conference on Algorithms, Microchips, and Network Applications, 2024, pp. 488–496.
- Dong, W.; Xue, S.; Duan, X.; Han, S. Prompt tuning inversion for text-driven image editing using diffusion models. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023.
- Zhang, L.; Wu, J.; Zhou, D.; Xu, G. STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models. arXiv preprint arXiv.2403.01165 2024.
- Feng, W.; Hao, C.; Zhang, Y.; Han, Y.; Wang, H. Mixture-of-LoRAs: An Efficient Multitask Tuning Method for Large Language Models. In Proceedings of the Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, 2024, pp. 11371–11380.
- Liu, T.; Low, B.K.H. Goat: Fine-tuned LLaMA Outperforms GPT-4 on Arithmetic Tasks. arXiv preprint arXiv:2305.14201 2023.
- Liu, S.; Wang, C.; Yin, H.; Molchanov, P.; Wang, Y.F.; Cheng, K.; Chen, M. DoRA: Weight-Decomposed Low-Rank Adaptation. arXiv preprint arXiv.2402.09353 2024.
- Yang, A.X.; Robeyns, M.; Wang, X.; Aitchison, L. Bayesian low-rank adaptation for large language models. arXiv preprint arXiv.2308.13111 2023.
- Pfeiffer, J.; Kamath, A.; Rücklé, A.; Cho, K.; Gurevych, I. AdapterFusion: Non-Destructive Task Composition for Transfer Learning. ArXiv 2020, abs/2005.00247.
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. In Proceedings of the International conference on machine learning. PMLR, 2021, pp. 8748–8763.
- Devlin, J. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 2018.
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research 2020, 21, 1–67.
- Xing, Z.; Dai, Q.; Hu, H.; Wu, Z.; Jiang, Y.G. Simda: Simple diffusion adapter for efficient video generation. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.
- Konstantinidis, T.; Iacovides, G.; Xu, M.; Constantinides, T.G.; Mandic, D.P. FinLlama: Financial Sentiment Classification for Algorithmic Trading Applications. arXiv preprint arXiv:2403.12285 2024.
- Radev, D.R.; Zhang, R.; Rau, A.; Sivaprasad, A.; Hsieh, C.H.; Rajani, N.; Tang, X.; Vyas, A.; Verma, N.; Krishna, P.; et al. DART: Open-Domain Structured Data Record to Text Generation. ArXiv 2020, abs/2007.02871.
- Reuther, A.; Michaleas, P.; Jones, M.; Gadepally, V.; Samsi, S.; Kepner, J. Survey and Benchmarking of Machine Learning Accelerators. 2019 IEEE High Performance Extreme Computing Conference (HPEC) 2019, pp. 1–9.
- Ren, Y.; Chen, Y.; Liu, S.; Wang, B.; Yu, H.; Cui, Z. TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models. arXiv preprint arXiv:2403.02221 2024.
- Guo, Y.; Yang, C.; Rao, A.; Wang, Y.; Qiao, Y.; Lin, D.; Dai, B. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. arXiv preprint arXiv:2307.04725 2023.
- Radford, A. Improving language understanding by generative pre-training. OpenAI 2018.
- Zhang, K.; Liu, D. Customized Segment Anything Model for Medical Image Segmentation. arXiv preprint arXiv:2304.13785 2023.
- Silva-Rodriguez, J.; Hajimiri, S.; Ben Ayed, I.; Dolz, J. A closer look at the few-shot adaptation of large vision-language models. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.
- Yang, Y.; Jiang, P.; Hou, Q.; Zhang, H.; Chen, J.; Li, B. Multi-Task Dense Prediction via Mixture of Low-Rank Experts. arXiv preprint arXiv.2403.17749 2024.
- Jiang, T.; Huang, S.; Luo, S.; Zhang, Z.; Huang, H.; Wei, F.; Deng, W.; Sun, F.; Zhang, Q.; Wang, D.; et al. MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning. arXiv preprint arXiv:2405.12130 2024.
- Gao, P.; Geng, S.; Zhang, R.; Ma, T.; Fang, R.; Zhang, Y.; Li, H.; Qiao, Y. Clip-adapter: Better vision-language models with feature adapters. International Journal of Computer Vision 2024. [CrossRef]
- Chen, Y.; Qian, S.; Tang, H.; Lai, X.; Liu, Z.; Han, S.; Jia, J. LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models. arXiv preprint arXiv.2309.12307 2023.
- Yao, T.; Pan, Y.; Li, Y.; Qiu, Z.; Mei, T. Boosting image captioning with attributes. In Proceedings of the Proceedings of the IEEE international conference on computer vision, 2017, pp. 4894–4902.
- Qi, Z.; Tan, X.; Shi, S.; Qu, C.; Xu, Y.; Qi, Y. PILLOW: Enhancing Efficient Instruction Fine-tuning via Prompt Matching. In Proceedings of the Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, 2023, pp. 471–482.
- Yin, D.; Hu, L.; Li, B.; Zhang, Y.; Yang, X. 5%> 100%: Breaking Performance Shackles of Full Fine-Tuning on Visual Recognition Tasks. arXiv preprint arXiv:2408.08345 2024.
- Jia, M.; Tang, L.; Chen, B.C.; Cardie, C.; Belongie, S.; Hariharan, B.; Lim, S.N. Visual prompt tuning. In Proceedings of the European Conference on Computer Vision, 2022.
- Sui, Y.; Yin, M.; Gong, Y.; Xiao, J.; Phan, H.; Yuan, B. ELRT: Efficient Low-Rank Training for Compact Convolutional Neural Networks. arXiv preprint arXiv.2401.10341 2024.
- Shao, Z.; Yu, Z.; Wang, M.; Yu, J. Prompting large language models with answer heuristics for knowledge-based visual question answering. In Proceedings of the Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 2023, pp. 14974–14983.
- Wang, Z.; Wang, X.; Xie, L.; Qi, Z.; Shan, Y.; Wang, W.; Luo, P. Styleadapter: A single-pass lora-free model for stylized image generation. arXiv preprint arXiv:2309.01770 2023.
- Malladi, S.; Wettig, A.; Yu, D.; Chen, D.; Arora, S. A Kernel-Based View of Language Model Fine-Tuning. In Proceedings of the International Conference on Machine Learning, 2023, pp. 23610–23641.
- Chen, A.; Yao, Y.; Chen, P.Y.; Zhang, Y.; Liu, S. Understanding and improving visual prompting: A label-mapping perspective. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 19133–19143.
- Ye, H.; Zhang, J.; Liu, S.; Han, X.; Yang, W. Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721 2023.
- Sun, J.; Fu, D.; Hu, Y.; Wang, S.; Rassin, R.; Juan, D.C.; Alon, D.; Herrmann, C.; van Steenkiste, S.; Krishna, R.; et al. Dreamsync: Aligning text-to-image generation with image understanding feedback. In Proceedings of the Synthetic Data for Computer Vision Workshop@ CVPR 2024, 2023.
- Gu, Y.; Wang, X.; Wu, J.Z.; Shi, Y.; Chen, Y.; Fan, Z.; Xiao, W.; Zhao, R.; Chang, S.; Wu, W.; et al. Mix-of-show: Decentralized low-rank adaptation for multi-concept customization of diffusion models. Advances in Neural Information Processing Systems 2024.
- Hu, E.; Tsai, Y.; Hsu, K.; Sussman, A.; Eleni, K.; Martinez, B.; Martinez, F.; Charle, R. LoRA: Low-Rank Adaptation of Large Language Models. In Proceedings of the Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.
- Chen, T.; Ding, T.; Yadav, B.; Zharkov, I.; Liang, L. Lorashear: Efficient large language model structured pruning and knowledge recovery. arXiv preprint arXiv:2310.18356 2023.
- Hu, S.; Liao, Z.; Xia, Y. ProSFDA: prompt learning based source-free domain adaptation for medical image segmentation. arXiv preprint arXiv:2211.11514 2022.
- Zniyed, Y.; Nguyen, T.P.; et al. Enhanced network compression through tensor decompositions and pruning. IEEE Transactions on Neural Networks and Learning Systems 2024. [CrossRef]
- Mao, Y.; Mathias, L.; Hou, R.; Almahairi, A.; Ma, H.; Han, J.; tau Yih, W.; Khabsa, M. UniPELT: A Unified Framework for Parameter-Efficient Language Model Tuning. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2021.
- Liu, Y. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 2019.
- Lester, B.; Al-Rfou, R.; Constant, N. The power of scale for parameter-efficient prompt tuning. In Proceedings of the Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.
- Li, Y.; Liu, H.; Wu, Q.; Mu, F.; Yang, J.; Gao, J.; Li, C.; Lee, Y.J. Gligen: Open-set grounded text-to-image generation. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
- Liu, S.Y.; Wang, C.Y.; Yin, H.; Molchanov, P.; Wang, Y.C.F.; Cheng, K.T.; Chen, M.H. DoRA: Weight-Decomposed Low-Rank Adaptation. arXiv preprint arXiv:2402.09353 2024.
- Li, X.; Liang, P.; Zhang, Z.; Xie, D.; Li, Y.; Zhang, Y.; Zhang, H.; Wang, Y.; Wang, R. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings of the Proceedings of the 39th International Conference on Machine Learning (ICML), 2021.
- Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys 2021, 55, 1 – 35. [CrossRef]
- Zhu, J.; Lai, S.; Chen, X.; Wang, D.; Lu, H. Visual prompt multi-modal tracking. In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2023.
- Wang, C.; Duan, Z.; Liu, B.; Zou, X.; Chen, C.; Jia, K.; Huang, J. PAI-Diffusion: Constructing and Serving a Family of Open Chinese Diffusion Models for Text-to-image Synthesis on the Cloud. arXiv preprint arXiv:2309.05534 2023.
- Ansell, A.; Ponti, E.; Pfeiffer, J.; Ruder, S.; Glavas, G.; Vulic, I.; Korhonen, A. MAD-G: Multilingual Adapter Generation for Efficient Cross-Lingual Transfer. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2021.
- Dong, B.; Zhou, P.; Yan, S.; Zuo, W. LPT: Long-tailed prompt tuning for image classification. International Journal of Computer Vision 2023.
- Li, S. DiffStyler: Diffusion-based Localized Image Style Transfer. arXiv preprint arXiv:2403.18461 2024.
- Liu, K.L.; Li, W.J.; Guo, M. Emoticon smoothed language models for twitter sentiment analysis. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2012, Vol. 26, pp. 1678–1684.
- Yang, S.; Ali, M.A.; Wang, C.; Hu, L.; Wang, D. MoRAL: MoE Augmented LoRA for LLMs’ Lifelong Learning. arXiv preprint arXiv.2402.11260 2024.
- Ayupov, S.; Chirkova, N. Parameter-efficient finetuning of transformers for source code. arXiv preprint arXiv:2212.05901 2022.
- Zhao, B.; Hajishirzi, H.; Cao, Q. Apt: Adaptive pruning and tuning pretrained language models for efficient training and inference. arXiv preprint arXiv:2401.12200 2024.
- Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461 2018.
- Zheng, L.; Chiang, W.L.; Sheng, Y.; Zhuang, S.; Wu, Z.; Zhuang, Y.; Lin, Z.; Li, Z.; Li, D.; Xing, E.P.; et al. Judging LLM-as-a-judge with MT-Bench and Chatbot Arena, 2023, [arXiv:cs.CL/2306.05685].
- Wang, H.; Chang, J.; Zhai, Y.; Luo, X.; Sun, J.; Lin, Z.; Tian, Q. Lion: Implicit vision prompt tuning. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2024.
- Liu, Z.; Lyn, J.; Zhu, W.; Tian, X.; Graham, Y. ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models. arXiv preprint arXiv.2403.16187 2024.
- Ye, M.; Fang, X.; Du, B.; Yuen, P.C.; Tao, D. Heterogeneous Federated Learning: State-of-the-art and Research Challenges. ACM Computing Surveys 2024, 56, 79:1–79:44. [CrossRef]
- Mao, Y.; Huang, K.; Guan, C.; Bao, G.; Mo, F.; Xu, J. DoRA: Enhancing Parameter-Efficient Fine-Tuning with Dynamic Rank Distribution. arXiv preprint arXiv:2405.17357 2024.
- Woo, S.; Park, B.; Kim, B.; Jo, M.; Kwon, S.; Jeon, D.; Lee, D. DropBP: Accelerating Fine-Tuning of Large Language Models by Dropping Backward Propagation. arXiv preprint arXiv:2402.17812 2024.
- Yao, H.; Wu, W.; Li, Z. Side4video: Spatial-temporal side network for memory-efficient image-to-video transfer learning. arXiv preprint arXiv:2311.15769 2023.
- Mangrulkar, S.; Gugger, S.; Debut, L.; Belkada, Y.; Paul, S.; Bossan, B. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/huggingface/peft 2022.
- DOSOVITSKIY, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 2020.
- Yoo, S.; Kim, K.; Kim, V.G.; Sung, M. As-Plausible-As-Possible: Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 4315–4324.
- Zniyed, Y.; Nguyen, T.P.; et al. Efficient tensor decomposition-based filter pruning. Neural Networks 2024, 178, 106393. [CrossRef]
- Golnari, P.A. LoRA-Enhanced Distillation on Guided Diffusion Models. arXiv preprint arXiv:2312.06899 2023.
- Zhu, Y.; Wichers, N.; Lin, C.; Wang, X.; Chen, T.; Shu, L.; Lu, H.; Liu, C.; Luo, L.; Chen, J.; et al. SiRA: Sparse Mixture of Low Rank Adaptation. arXiv preprint arXiv.2311.09179 2023.
- Xu, R.; Luo, F.; Zhang, Z.; Tan, C.; Chang, B.; Huang, S.; Huang, F. Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. ArXiv 2021, abs/2109.05687.
- Qin, J.; Wu, J.; Yan, P.; Li, M.; Yuxi, R.; Xiao, X.; Wang, Y.; Wang, R.; Wen, S.; Pan, X.; et al. Freeseg: Unified, universal and open-vocabulary image segmentation. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 19446–19455.
- Suri, K.; Mishra, P.; Saha, S.; Singh, A. SuryaKiran at MEDIQA-Sum 2023: Leveraging LoRA for Clinical Dialogue Summarization. In Proceedings of the Working Notes of the Conference and Labs of the Evaluation Forum, 2023, pp. 1720–1735.
- Ding, N.; Qin, Y.; Yang, G.; Wei, F.; Yang, Z.; Su, Y.; Hu, S.; Chen, Y.; Chan, C.; Chen, W.; et al. Parameter-efficient fine-tuning of large-scale pre-trained language models. Nat. Mac. Intell. 2023, 5, 220–235. [CrossRef]
- Huang, T.; Zeng, Y.; Zhang, Z.; Xu, W.; Xu, H.; Xu, S.; Lau, R.W.H.; Zuo, W. DreamControl: Control-Based Text-to-3D Generation with 3D Self-Prior. arXiv preprint arXiv:2312.06439 2023.
- Zhu, Y.; Yang, X.; Wu, Y.; Zhang, W. Parameter-efficient fine-tuning with layer pruning on free-text sequence-to-sequence modeling. arXiv preprint arXiv:2305.08285 2023.
- Yang, A.X.; Robeyns, M.; Coste, T.; Wang, J.; Bou-Ammar, H.; Aitchison, L. Bayesian Reward Models for LLM Alignment. arXiv preprint arXiv:2402.13210 2024.
- Zhang, J.O.; Sax, A.; Zamir, A.; Guibas, L.; Malik, J. Side-tuning: a baseline for network adaptation via additive side networks. In Proceedings of the European Conference on Computer Vision, 2020.
- Wang, H.; Xiao, Z.; Li, Y.; Wang, S.; Chen, G.; Chen, Y. MiLoRA: Harnessing Minor Singular Components for Parameter-Efficient LLM Finetuning. arXiv preprint arXiv:2406.09044 2024.
- Ge, Y.; Ge, Y.; Zeng, Z.; Wang, X.; Shan, Y. Planting a SEED of Vision in Large Language Model. arXiv preprint arXiv:2307.08041 2023.
- Tran, H.; Yang, Z.; Yao, Z.; Yu, H. BioInstruct: Instruction Tuning of Large Language Models for Biomedical Natural Language Processing. arXiv preprint arXiv:2310.19975 2023. [CrossRef]
- Frank, M.; Wolfe, P.; et al. An algorithm for quadratic programming. Naval research logistics quarterly 1956, 3, 95–110.
- Gema, A.P.; Daines, L.; Minervini, P.; Alex, B. Parameter-Efficient Fine-Tuning of LLaMA for the Clinical Domain. arXiv preprint arXiv:2307.03042 2023.
- Liu, G.; Xia, M.; Zhang, Y.; Chen, H.; Xing, J.; Wang, X.; Yang, Y.; Shan, Y. Stylecrafter: Enhancing stylized text-to-video generation with style adapter. arXiv preprint arXiv:2312.00330 2023.
- Kovaleva, O.; Romanov, A.; Rogers, A.; Rumshisky, A. Revealing the Dark Secrets of BERT. ArXiv 2019, abs/1908.08593.
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the European Conference on Computer Vision, 2016.
- Aghajanyan, A.; Zettlemoyer, L.; Gupta, S. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2020.
- Santacroce, M.; Lu, Y.; Yu, H.; Li, Y.; Shen, Y. Efficient RLHF: Reducing the Memory Usage of PPO. arXiv preprint arXiv:2309.00754 2023.
- Ye, Z.; Lovell, L.; Faramarzi, A.; Ninic, J. SAM-based instance segmentation models for the automation of structural damage detection. arXiv preprint arXiv:2401.15266 2024. [CrossRef]
- Shin, T.; Razeghi, Y.; IV, R.L.L.; Wallace, E.; Singh, S. Eliciting Knowledge from Language Models Using Automatically Generated Prompts. ArXiv 2020, abs/2010.15980.
- Tan, W.; Zhang, W.; Liu, S.; Zheng, L.; Wang, X.; An, B. True knowledge comes from practice: Aligning llms with embodied environments via reinforcement learning. arXiv preprint arXiv:2401.14151 2024.
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; chun Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the NIPS, 2015.
- Tang, Z.; Yang, Z.; Zhu, C.; Zeng, M.; Bansal, M. Any-to-any generation via composable diffusion. Advances in Neural Information Processing Systems 2024.
- Mu, Y.; Zhang, Q.; Hu, M.; Wang, W.; Ding, M.; Jin, J.; Wang, B.; Dai, J.; Qiao, Y.; Luo, P. Embodiedgpt: Vision-language pre-training via embodied chain of thought. Advances in Neural Information Processing Systems 2024, 36.
- Hong, W.; Ding, M.; Zheng, W.; Liu, X.; Tang, J. Cogvideo: Large-scale pretraining for text-to-video generation via transformers. arXiv preprint arXiv:2205.15868 2022.
- Wen, Y.; Chaudhuri, S. Batched Low-Rank Adaptation of Foundation Models. arXiv preprint arXiv.2312.05677 2023.
- Wu, J.Z.; Ge, Y.; Wang, X.; Lei, S.W.; Gu, Y.; Shi, Y.; Hsu, W.; Shan, Y.; Qie, X.; Shou, M.Z. Tune-a-video: One-shot tuning of image diffusion models for text-to-video generation. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023.
- Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A Survey of Large Language Models. ArXiv 2023, abs/2303.18223.
- Rücklé, A.; Geigle, G.; Glockner, M.; Beck, T.; Pfeiffer, J.; Reimers, N.; Gurevych, I. AdapterDrop: On the Efficiency of Adapters in Transformers. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020.
- Zhang, N.; Bi, Z.; Liang, X.; Cheng, S.; Hong, H.; Deng, S.; Lian, J.; Zhang, Q.; Chen, H. OntoProtein: Protein Pretraining With Gene Ontology Embedding. ArXiv 2022, abs/2201.11147.
- Liu, S.Y.; Wang, C.Y.; Yin, H.; Molchanov, P.; Wang, Y.C.F.; Cheng, K.T.; Chen, M.H. Dora: Weight-decomposed low-rank adaptation. arXiv preprint arXiv:2402.09353 2024.
- Lin, H.; Cho, J.; Zala, A.; Bansal, M. Ctrl-Adapter: An Efficient and Versatile Framework for Adapting Diverse Controls to Any Diffusion Model. arXiv preprint arXiv:2404.09967 2024.
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. nature 2021, 596, 583–589. [CrossRef]
- Li, S.; Lu, H.; Wu, T.; Yu, M.; Weng, Q.; Chen, X.; Shan, Y.; Yuan, B.; Wang, W. CaraServe: CPU-Assisted and Rank-Aware LoRA Serving for Generative LLM Inference. arXiv preprint arXiv:2401.11240 2024.
- Conneau, A.; Lample, G. Cross-lingual language model pretraining. Advances in neural information processing systems 2019, 32.
- Luo, Z.; Xu, X.; Liu, F.; Koh, Y.S.; Wang, D.; Zhang, J. Privacy-Preserving Low-Rank Adaptation for Latent Diffusion Models. arXiv preprint arXiv.2402.11989 2024.
- Gardent, C.; Shimorina, A.; Narayan, S.; Perez-Beltrachini, L. The WebNLG Challenge: Generating Text from RDF Data. In Proceedings of the International Conference on Natural Language Generation, 2017.
- Jiang, Z.; Chen, T.; Chen, X.; Cheng, Y.; Zhou, L.; Yuan, L.; Awadallah, A.; Wang, Z. Dna: Improving few-shot transfer learning with low-rank decomposition and alignment. In Proceedings of the European Conference on Computer Vision, 2022.
- Chen, Z.; Huang, H.; Andrusenko, A.; Hrinchuk, O.; Puvvada, K.C.; Li, J.; Ghosh, S.; Balam, J.; Ginsburg, B. SALM: Speech-augmented Language Model with In-context Learning for Speech Recognition and Translation. arXiv preprint arXiv:2310.09424 2023.
- Li, J.; Li, D.; Xiong, C.; Hoi, S. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In Proceedings of the International conference on machine learning. PMLR, 2022.
- Bu, Z.; Wang, Y.X.; Zha, S.; Karypis, G. Differentially private bias-term only fine-tuning of foundation models. Advances in Neural Information Processing Systems 2022.
- Koubbi, H.; Boussard, M.; Hernandez, L. The Impact of LoRA on the Emergence of Clusters in Transformers. arXiv preprint arXiv.2402.15415 2024.
- Sun, Y.; Li, Z.; Li, Y.; Ding, B. Improving LoRA in Privacy-preserving Federated Learning. arXiv preprint arXiv:2403.12313 2024.
- Houlsby, N.; Giurgiu, A.; Hu, X.; Goyal, N.; Rashid, A.; Vaswani, A.; Shazeer, N. Parameter-efficient transfer learning for NLP. In Proceedings of the Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.
- Ding, N.; Qin, Y.; Yang, G.; Wei, F.; Yang, Z.; Su, Y.; Hu, S.; Chen, Y.; Chan, C.M.; Chen, W.; et al. Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models. ArXiv 2022, abs/2203.06904.
- Zhang, Y.; Xu, Q.; Zhang, L. DragTex: Generative Point-Based Texture Editing on 3D Mesh. arXiv preprint arXiv:2403.02217 2024.
- Huang, C.; Liu, Q.; Lin, B.Y.; Pang, T.; Du, C.; Lin, M. LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition. arXiv preprint arXiv.2307.13269 2023.
- Li, Z.; Wang, Y.; Zhi, T.; Chen, T. A survey of neural network accelerators. Frontiers of Computer Science 2017, 11, 746–761.
- Zhang, L.; Zhang, L.; Shi, S.; Chu, X.; Li, B. Lora-fa: Memory-efficient low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303 2023.
- Tworkowski, S.; Staniszewski, K.; Pacek, M.; Wu, Y.; Michalewski, H.; Milos, P. Focused Transformer: Contrastive Training for Context Scaling. In Proceedings of the Advances in Neural Information Processing Systems, 2023.
- Xing, J.; Wang, M.; Hou, X.; Dai, G.; Wang, J.; Liu, Y. Multimodal adaptation of clip for few-shot action recognition. arXiv preprint arXiv:2308.01532 2023.
- Dettmers, T.; Pagnoni, A.; Holtzman, A.; Zettlemoyer, L. Qlora: Efficient finetuning of quantized llms. In Proceedings of the Advances in Neural Information Processing Systems, 2024.
| Method | Trainable Params | Inference Cost | Modularity |
|---|---|---|---|
| Full Fine-Tuning | High | High | No |
| Adapter-Based | Low | Moderate | Yes |
| LoRA | Very Low | Low | No |
| Prompt Tuning | Minimal | Low | Yes |
| BitFit | Minimal | Very Low | No |
| Method | Trainable Parameters | Memory Footprint | Training Speed |
|---|---|---|---|
| Full Fine-Tuning | 100% | High | Slow |
| Adapters | 1-5% | Moderate | Fast |
| LoRA | <1% | Low | Fast |
| Prompt Tuning | <0.1% | Very Low | Very Fast |
| BitFit | <0.1% | Very Low | Fast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
