Submitted:
22 January 2025
Posted:
24 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Clinical Presentation and Diagnosis
2.1. Neuroleptic Malignant Syndrome
2.2. Parkinsonism-Hyperpyrexia Syndrome
2.3. Serotonin Syndrome
2.4. Malignant Catatonia
2.5. Status Dystonicus
2.6. Myoclonus
2.7. Tics
2.8. Chorea and Ballism
2.9. Drug-Induced Movement Disorder
3. Management Strategies
3.1. Neuroleptic Malignant Syndrome
3.2. Parkinsonism-Hyperpyrexia Syndrome
3.3. Serotonin Syndrome
3.4. Malignant Catatonia
3.5. Status Dystonicus
3.6. Myoclonus
3.7. Tics
3.8. Chorea and Ballism
4. Challenges And Considerations
4.1. Diagnostic Challenges
4.2. Treatment Challenges
4.3. Ethical Considerations
5. Future Directions and Research Needs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cossu, G.; Colosimo, C. Hyperkinetic Movement Disorder Emergencies. Curr. Neurol. Neurosci. Rep. 2017, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Velamoor, R. Neuroleptic malignant syndrome: A neuro-psychiatric emergency: Recognition, prevention, and management. Asian J. Psychiatry 2017, 29, 106–109. [Google Scholar] [CrossRef]
- Schönfeldt-Lecuona, C.; Kuhlwilm, L.; Cronemeyer, M.; Neu, P.; Connemann, B.J.; Gahr, M.; Sartorius, A.; Mühlbauer, V. Treatment of the Neuroleptic Malignant Syndrome in International Therapy Guidelines: A Comparative Analysis. Pharmacopsychiatry 2020, 53, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, R.P.; Scorr, L.M.; Factor, S.A. Movement disorders emergencies. Curr. Opin. Neurol. 2015, 28, 406–412. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Huang, J.-F.; Zhu, S.-G.; Huang, S.-S.; Liu, R.-P.; Hu, B.-L.; Zhu, J.-H.; Zhang, X. Parkinsonism-Hyperpyrexia Syndrome and Dyskinesia-Hyperpyrexia Syndrome in Parkinson’s Disease: Two Cases and Literature Review. J. Park. Dis. 2022, 12, 1727–1735. [Google Scholar] [CrossRef]
- Serrano-Dueñas, M. Neuroleptic Malignant Syndrome-like, or--Dopaminergic Malignant Syndrome--Due to Levodopa Therapy Withdrawal. Clinical Features in 11 Patients. Parkinsonism Relat. Disord. 2003, 9, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Takubo, H.; Harada, T.; Hashimoto, T.; Inaba, Y.; Kanazawa, I.; Kuno, S.; Mizuno, Y.; Mizuta, E.; Murata, M.; Nagatsu, T.; et al. A collaborative study on the malignant syndrome in Parkinson's disease and related disorders. Park. Relat. Disord. 2003, 9 (Suppl. S1), S31–S41. [Google Scholar] [CrossRef]
- Rajan, S.; Kaas, B.; Moukheiber, E. Movement Disorders Emergencies. Semin. Neurol. 2019, 39, 125–136. [Google Scholar] [CrossRef]
- Talton, C. Serotonin Syndrome/Serotonin Toxicity. Fed. Pract. 2020, 37, 452–459. [Google Scholar] [CrossRef]
- Wong, A. An update on opsoclonus. Curr. Opin. Neurol. 2007, 20, 25–31. [Google Scholar] [CrossRef]
- Mikkelsen, N.; Damkier, P.; Pedersen, S.A. Serotonin Syndrome-A Focused Review. Basic Clin. Pharmacol. Toxicol. 2023, 133, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Volpi-Abadie, J.; Kaye, A.M.; Kaye, A.D. Serotonin Syndrome. Ochsner J. 2013, 13, 533–540. [Google Scholar] [PubMed]
- Dunkley, E.; Isbister, G.; Sibbritt, D.; Dawson, A.; Whyte, I. The Hunter Serotonin Toxicity Criteria: simple and accurate diagnostic decision rules for serotonin toxicity. QJM 2003, 96, 635–642. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Kaufman, S.E.; Hollier, J.W.; Virgen, C.G.; Karam, C.A.; Malone, G.W.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. Catatonia: Clinical Overview of the Diagnosis, Treatment, and Clinical Challenges. Neurol. Int. 2021, 13, 570–586. [Google Scholar] [CrossRef]
- Connell, J.; Oldham, M.; Pandharipande, P.; Dittus, R.S.; Wilson, A.; Mart, M.; Heckers, S.; Ely, E.W.; Wilson, J.E. Malignant Catatonia: A Review for the Intensivist. J. Intensiv. Care Med. 2022, 38, 137–150. [Google Scholar] [CrossRef]
- Fasano, A.; Ricciardi, L.; Bentivoglio, A.R.; Canavese, C.; Zorzi, G.; Petrovic, I.; Kresojevic, N.; Kostić, V.S.; Svetel, M.; Kovacs, N.; et al. Status dystonicus: Predictors of outcome and progression patterns of underlying disease. Mov. Disord. 2012, 27, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Walcott, B.P.; Nahed, B.V.; Kahle, K.T.; Duhaime, A.-C.; Sharma, N.; Eskandar, E.N. Deep brain stimulation for medically refractory life-threatening status dystonicus in children. J. Neurosurgery: Pediatr. 2012, 9, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Manji, H.; Howard, R.S.; Miller, D.H.; Hirsch, N.P.; Carr, L.; Bhatia, K.; Quinn, N.; Marsden, C.D.; Bahtia, K. Status dystonicus: the syndrome and its management. Brain 1998, 121, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Caviness, J.N. Myoclonus. Continuum 2019, 25, 1055–1080. [Google Scholar] [PubMed]
- van der Veen, S.; Caviness, J.N.; Dreissen, Y.E.; Ganos, C.; Ibrahim, A.; Koelman, J.H.; Stefani, A.; Tijssen, M.A. Myoclonus and other jerky movement disorders. Clin. Neurophysiol. Pract. 2022, 7, 285–316. [Google Scholar] [CrossRef]
- Pena, A.B.; Caviness, J.N. Physiology-Based Treatment of Myoclonus. Neurotherapeutics 2020, 17, 1665–1680. [Google Scholar] [CrossRef]
- Caviness, J.N. Treatment of Myoclonus. Neurotherapeutics 2014, 11, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Leckman, J.F.; Peterson, B.S.; Pauls, D.L.; Cohen, D.J. Tic Disorders. Psychiatr. Clin. North. Am. 1997, 20, 839–861. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Seppi, K.; Mair, K.J.; Wenning, G.K.; Poewe, W. Seminar on Choreas. Lancet Neurol. 2006, 5, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Pitton Rissardo, J.; Fornari Caprara, A.L. A Literature Review of Movement Disorder Associated with Medications and Systemic Diseases. Preprints 2024.
- Byroju, V.V.; Rissardo, J.P.; Durante, Í.; Caprara, A.L.F. Cocaine-induced Movement Disorder: A Literature Review. Prague Med Rep. 2024, 125, 195–219. [Google Scholar] [CrossRef] [PubMed]
- Rissardo, J.P.; de Matos, U.M.A.; Caprara, A.L.F. Gabapentin-Associated Movement Disorders: A Literature Review. Medicines 2023, 10, 52. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F. Phenytoin-Associated Movement Disorder: A Literature Review. Tzu Chi Med. J. 2022, 34, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Rissardo, J.P.; Caprara, A.L.F.; Durante, Í. Valproate-associated Movement Disorder: A Literature Review. Prague Med Rep. 2021, 122, 140–180. [Google Scholar] [CrossRef] [PubMed]
- Kaliora, S.; Zervas, I.; Papadimitriou, G. Electroconvulsive therapy: 80 years of use in psychiatry. Psychiatriki 2018, 29, 291–302. [Google Scholar] [CrossRef]
- Simonet, C.; Tolosa, E.; Camara, A.; Valldeoriola, F. Emergencies and critical issues in Parkinson’s disease. Pract. Neurol. 2020, 20, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Denysenko, L.; Sica, N.; Penders, T.M.; Philbrick, K.L.; Walker, A.; Shaffer, S.; Zimbrean, P.; Freudenreich, O.; Rex, N.; Carroll, B.T.; et al. Catatonia in the Medically Ill: Etiology, Diagnosis, and Treatment. The Academy of Consultation-Liaison Psychiatry Evidence-Based Medicine Subcommittee Monograph. Ann. Clin. Psychiatry 2018, 30, 140–155. [Google Scholar] [PubMed]
- Rasmussen, S.A.; Mazurek, M.F.; I Rosebush, P. Catatonia: Our current understanding of its diagnosis, treatment and pathophysiology. World J. Psychiatry 2016, 6, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Vogt, L.M.; Yang, K.; Tse, G.; Quiroz, V.; Zaman, Z.; Wang, L.; Srouji, R.; Tam, A.; Estrella, E.; Manzi, S.; et al. Recommendations for the Management of Initial and Refractory Pediatric Status Dystonicus. Mov. Disord. 2024, 39, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, G.; Marras, C.; Nardocci, N.; Franzini, A.; Chiapparini, L.; Maccagnano, E.; Angelini, L.; Caldiroli, D.; Broggi, G. Stimulation of the globus pallidus internus for childhood-onset dystonia. Mov. Disord. 2005, 20, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- E Gandhi, S.; Newman, E.J.; Marshall, V.L. Emergency presentations of movement disorders. Pract. Neurol. 2020, 20, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Kojovic, M.; Cordivari, C.; Bhatia, K. Myoclonic disorders: a practical approach for diagnosis and treatment. Ther. Adv. Neurol. Disord. 2011, 4, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Genton, P.; Gélisse, P. Antimyoclonic effect of levetiracetam. Epileptic Disord. 2000, 2, 209–212. [Google Scholar] [CrossRef]
- Calleja, S.; Salas-Puig, J.; Ribacoba, R.; Lahoz, C.H. Evolution of Juvenile Myoclonic Epilepsy Treated from the Outset with Sodium Valproate. Seizure 2001, 10, 424–427. [Google Scholar] [CrossRef]
- Belli, E.; Del Prete, E.; Unti, E.; Mazzucchi, S.; Palermo, G.; Ceravolo, R. Perampanel as a novel treatment for subcortical myoclonus in myoclonus-dystonia syndrome. Neurol. Sci. 2023, 44, 2943–2945. [Google Scholar] [CrossRef]
- Shprecher, D.; Kurlan, R. The management of tics. Mov. Disord. 2009, 24, 15–24. [Google Scholar] [CrossRef]
- Kurlan, R.; Como, P.G.; Miller, B.; Palumbo, D.; Deeley, C.; Andresen, E.M.; Eapen, S.; McDermott, M.P. The Behavioral Spectrum of Tic Disorders: A Community-Based Study. Neurology 2002, 59, 414–420. [Google Scholar] [CrossRef]
- Steingard, R.J.; Goldberg, M.; Lee, D.; DeMASO, D.R. Adjunctive Clonazepam Treatment of Tic Symptoms in Children with Comorbid Tic Disorders and ADHD. J. Am. Acad. Child Adolesc. Psychiatry 1994, 33, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Vadlamani, N.; Ibrahimli, S.; Khan, F.A.; Castillo, J.A.; Amaravadi, K.S.S.; Nalisetty, P.; Khan, S. Efficacy and Safety of Tetrabenazine in Reducing Chorea and Improving Motor Function in Individuals With Huntington's Disease: A Systematic Review. Cureus 2024, 16, e71476. [Google Scholar] [CrossRef] [PubMed]
- Rissardo, J.P.; Vora, N.M.; Tariq, I.; Mujtaba, A.; Caprara, A.L.F. Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review. Medicina 2023, 59, 1991. [Google Scholar] [CrossRef] [PubMed]
- Saft, C.; Burgunder, J.-M.; Dose, M.; Jung, H.H.; Katzenschlager, R.; Priller, J.; Nguyen, H.P.; Reetz, K.; Reilmann, R.; Seppi, K.; et al. Differential diagnosis of chorea (guidelines of the German Neurological Society). Neurol. Res. Pract. 2023, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Dallocchio, C.; Matinella, A.; Arbasino, C.; Arno’, N.; Glorioso, M.; Sciarretta, M.; Braga, M.; Tinazzi, M. Movement disorders in emergency settings: a prospective study. Neurol. Sci. 2018, 40, 133–138. [Google Scholar] [CrossRef]
- Mason, P.J.; Morris, V.A.; Balcezak, T.J. Serotonin Syndrome. Presentation of 2 Cases and Review of the Literature. Medicine 2000, 79, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.M.; Whiteley, W.N.; Hart, S.R.; Salman, R.A.-S. Strokes: mimics and chameleons. Pract. Neurol. 2013, 13, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-Y.; Chen, C.-H.; Sung, S.-F.; Hwang, W.-J. Parkinsonism or Other Movement Disorders Presenting as Stroke Mimics. Acta Neurol. 2016, 25, 124–128. [Google Scholar]
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson's disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A.; Logroscino, G.; Rizzo, G.; Copetti, M.; Arcuti, S.; Martino, D.; Fontana, A. Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis. Neurology 2016, 86, 566–576. [Google Scholar] [CrossRef]
- Schrag, A.; Ben-Shlomo, Y.; Quinn, N. How valid is the clinical diagnosis of Parkinson's disease in the community? J. Neurol. Neurosurg. Psychiatry 2002, 73, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Kipps, C.M.; Fung, V.S.; Grattan-Smith, P.; de Moore, G.M.; Morris, J.G. Movement disorder emergencies. Mov. Disord. 2005, 20, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.B.; Iourinets, J.; Richard, I.H. Parkinson’s Disease Psychosis: Presentation, Diagnosis and Management. Neurodegener. Dis. Manag. 2017, 7, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Fukami, T.; Ogiso, T.; Hirose, D.; Jones, J.P.; Taniguchi, T.; Nakajima, M. Identification of enzymes responsible for dantrolene metabolism in the human liver: A clue to uncover the cause of liver injury. Biochem. Pharmacol. 2018, 151, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Harrison, G.G. Malignant Hyperthermia. Dantrolene--Dynamics and Kinetics. Br J Anaesth 1988, 60, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, B.; Staiger, P.K.; Hall, K.; Miller, P.; Best, D.; I Lubman, D. Benzodiazepine use and aggressive behaviour: A systematic review. Aust. New Zealand J. Psychiatry 2014, 48, 1096–1114. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, D.J. Pharmacology of benzodiazepine hypnotics. J. Clin. Psychiatry 1992, 53, 7–13. [Google Scholar]
- McDonald, E.M.; Caslangen, J. Benzodiazepine Use and Falls in Older Adults: Is It Worth the Risk? Res. Gerontol. Nurs. 2019, 12, 214–216. [Google Scholar] [CrossRef]
- Cocores, J. Benzodiazepine Withdrawal. Am. J. Psychiatry 1991, 148, 1621. [Google Scholar] [PubMed]
- Bishara, D.; Harwood, D.; Sauer, J.; Taylor, D.M. Anticholinergic effect on cognition (AEC) of drugs commonly used in older people. Int. J. Geriatr. Psychiatry 2017, 32, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Joshi, Y.B.; Thomas, M.L.; Braff, D.L.; Green, M.F.; Gur, R.C.; Gur, R.E.; Nuechterlein, K.H.; Stone, W.S.; Greenwood, T.A.; Lazzeroni, L.C.; et al. Anticholinergic Medication Burden–Associated Cognitive Impairment in Schizophrenia. Am. J. Psychiatry 2021, 178, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Campbell, N.; Khan, B.; Callahan, C.; Boustani, M. Long-term anticholinergic use and the aging brain. Alzheimer's Dement. 2012, 9, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Talwar, A.; Aparasu, R.R. Anticholinergic Medications and Risk of Dementia in Older Adults: Where Are We Now? Expert Opin. Drug Saf. 2020, 19, 1251–1267. [Google Scholar] [CrossRef]
- Stewart, C.; Yrjana, K.; Kishor, M.; Soiza, R.L.; Taylor-Rowan, M.; Quinn, T.J.; Loke, Y.K.; Myint, P.K. Anticholinergic Burden Measures Predict Older People's Physical Function and Quality of Life: A Systematic Review. J. Am. Med. Dir. Assoc. 2021, 22, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Cancelli, I.; Beltrame, M.; D’Anna, L.; Gigli, G.L.; Valente, M. Drugs with Anticholinergic Properties: A Potential Risk Factor for Psychosis Onset in Alzheimer’s Disease? Expert Opin. Drug Saf. 2009, 8, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, K.; Gorczyca, M.; Gołębiowska, J.; Szewieczek, J. Anticholinergic Burden of Geriatric Ward Inpatients. Medicina 2021, 57, 1115. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Vora, N.; Mathew, B.; Kashyap, V.; Muhammad, S.; Caprara, A.L.F. Overview of Movement Disorders Secondary to Drugs. Clin. Pract. 2023, 13, 959–976. [Google Scholar] [CrossRef] [PubMed]
- Dalkara, S.; Karakurt, A. Recent Progress in Anticonvulsant Drug Research: Strategies for Anticonvulsant Drug Development and Applications of Antiepileptic Drugs for Non-Epileptic Central Nervous System Disorders. Curr. Top. Med. Chem. 2012, 12, 1033–1071. [Google Scholar] [CrossRef]
- Pinkston, R.; Walker, L. Multiorgan system failure caused by valproic acid toxicity. Am. J. Emerg. Med. 1997, 15, 504–506. [Google Scholar] [CrossRef] [PubMed]
- Wong, I.C.K.; Chadwick, D.W.; Fenwick, P.B.C.; Mawer, G.E.; Sander, J.W.A.S. The Long-Term Use of Gabapentin, Lamotrigine, and Vigabatrin in Patients with Chronic Epilepsy. Epilepsia 1999, 40, 1439–1445. [Google Scholar] [CrossRef]
- Brickel, N.; Shaikh, M.H.S.; Kirkham, A.; Davies, G.; Chalker, M.; Yoshida, P. Collaboration in pharmacovigilance: lamotrigine and fatal severe cutaneous adverse reactions – a review of spontaneous reports. Ther. Clin. Risk Manag. 2017, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Marushima, A.; Takahashi, Y.; Mochizuki, M.; Kimura, A.; Fukuda, Y.; Asami, M.; Nakamoto, H.; Egawa, S.; Kaneko, J.; et al. Levetiracetam versus fosphenytoin as a second-line treatment after diazepam for adult convulsive status epilepticus: a multicentre non-inferiority randomised control trial. J. Neurol. Neurosurg. Psychiatry 2023, 94, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Coplin, W.M.; Rhoney, D.H.; Rebuck, J.A.; Clements, E.A.; Cochran, M.S.; O'Neil, B.J. Randomized evaluation of adverse events and length-of-stay with routine emergency department use of phenytoin or fosphenytoin. Neurol. Res. 2002, 24, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.A. Levodopa: Past, Present, and Future. Eur. Neurol. 2009, 62, 1–8. [Google Scholar] [CrossRef]
- Olanow, C.W.; A Obeso, J.; Stocchi, F. Continuous dopamine-receptor treatment of Parkinson's disease: scientific rationale and clinical implications. Lancet Neurol. 2006, 5, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Khalil, I.; Sayad, R.; Kedwany, A.M.; Sayed, H.H.; Caprara, A.L.F.; Rissardo, J.P. Cardiovascular dysautonomia and cognitive impairment in Parkinson's disease (Review). Med. Int. 2024, 4, 70. [Google Scholar] [CrossRef]
- Witjas, T.; Kaphan, E.; Azulay, J.P.; Blin, O.; Ceccaldi, M.; Pouget, J.; Poncet, M.; Chérif, A.A. Nonmotor Fluctuations in Parkinson’s Disease: Frequent and Disabling. Neurology 2002, 59, 408–413. [Google Scholar] [CrossRef]
- Grady, C. Enduring and Emerging Challenges of Informed Consent. New Engl. J. Med. 2015, 372, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Rubin, E.B.; Bernat, J.L. Consent Issues in Neurology. Neurol. Clin. 2010, 28, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Su, X.W.; Simmons, Z. Ethical Considerations in Neurogenetic Testing. Semin. Neurol. 2018, 38, 505–514. [Google Scholar] [CrossRef]
- Vinther-Jensen, T.; Larsen, I.U.; E Hjermind, L.; Budtz-Jørgensen, E.; Nielsen, T.T.; Nørremølle, A.; E Nielsen, J.; Vogel, A. A clinical classification acknowledging neuropsychiatric and cognitive impairment in Huntington’s disease. Orphanet J. Rare Dis. 2014, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Bernat, J.L. Informed Consent. Muscle Nerve 2001, 24, 614–621. [Google Scholar] [CrossRef]
- Cacic, K.; Bonomo, J. NeuroEthics and End of Life Care. Emerg. Med. Clin. North Am. 2021, 39, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Korbila, I.P.; Giannopoulou, K.P.; Kondilis, B.K.; Peppas, G. Informed consent: how much and what do patients understand? Am. J. Surg. 2009, 198, 420–435. [Google Scholar] [CrossRef]
- Daly, F.N.; Ramanathan, U. End-of-Life and Hospice Care for Neurologic Illness. Handb. Clin. Neurol. 2022, 190, 195–215. [Google Scholar]
- Robinson, M.T.; Holloway, R.G. Palliative Care in Neurology. Mayo Clin. Proc. 2017, 92, 1592–1601. [Google Scholar] [CrossRef] [PubMed]
- Gursahani, R.; Mani, R.K.; Simha, S.N. End of Life and Palliative Care in Neurology: Does Autonomy Matter? Ann. Indian Acad. Neurol. 2018, 21, 239–241. [Google Scholar] [CrossRef]
- Creutzfeldt, C.J.; Robinson, M.T.; Holloway, R.G. Neurologists as Primary Palliative Care Providers: Communication and Practice Approaches. Neurol. Clin. Pract. 2016, 6, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ng, H.L.; Li, W.; Piano, A.N.; Karim, S.A.; Tay, K.Y.; Au, W.L.; Tan, L.C. Treatment Preferences at the End-of-Life in Parkinson’s Disease Patients. Mov. Disord. Clin. Pract. 2016, 3, 483–489. [Google Scholar] [CrossRef]
- Wakeman, D.R.; Dodiya, H.B.; Kordower, J.H. Cell Transplantation and Gene Therapy in Parkinson's Disease. Mt. Sinai J. Med. 2011, 78, 126–158. [Google Scholar] [CrossRef] [PubMed]
- McFarland, N.R.; Okun, M.S. Movement Disorders in 2012: Advancing Research towards Novel Therapeutic Approaches. Nat. Rev. Neurol. 2013, 9, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Vijiaratnam, N.; Simuni, T.; Bandmann, O.; Morris, H.R.; Foltynie, T. Progress towards therapies for disease modification in Parkinson's disease. Lancet Neurol. 2021, 20, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Wong, Y.C.; Ysselstein, D.; Severino, A.; Krainc, D. Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson’s Disease. Trends Neurosci. 2019, 42, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, V.; Singh, K.; Kumar, S.; Kim, Y.-S.; Lee, Y.-M.; Kim, J.-J. Therapeutic Advances for Huntington’s Disease. Brain Sci. 2020, 10, 43. [Google Scholar] [CrossRef]
- Abeliovich, A.; Hefti, F.; Sevigny, J. Gene Therapy for Parkinson’s Disease Associated with GBA1 Mutations. J. Park. Dis. 2021, 11, S183–S188. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. New Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Schneeberger, A.; Tierney, L.; Mandler, M. Active immunization therapies for Parkinson's disease and multiple system atrophy. Mov. Disord. 2016, 31, 214–224. [Google Scholar] [CrossRef]
- Bergström, A.; Kallunki, P.; Fog, K. Development of Passive Immunotherapies for Synucleinopathies. Mov. Disord. 2016, 31, 203–213. [Google Scholar] [CrossRef]
- McNeill, A.; Magalhaes, J.; Shen, C.; Chau, K.-Y.; Hughes, D.; Mehta, A.; Foltynie, T.; Cooper, J.M.; Abramov, A.Y.; Gegg, M.; et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 2014, 137, 1481–1495. [Google Scholar] [CrossRef] [PubMed]
- Axelsen, T.M.; Woldbye, D.P.D. Gene Therapy for Parkinson’s Disease, An Update. J Parkinsons Dis 2018, 8, 195–215. [Google Scholar] [CrossRef]
| Condition | Immediate Interventions | Pharmacological Treatment | Non-Pharmacological Treatment |
|---|---|---|---|
| Neuroleptic malignant syndrome | Discontinue offending medication; ensure ABCs; monitor vital signs. | Dantrolene (for muscle rigidity), supportive care (e.g., hydration, cooling measures). | Discontinue offending medication, avoid future use of neuroleptics. |
| Parkinsonism-hyperpyrexia syndrome | Discontinue offending medication; ensure ABCs; monitor vital signs. | Supportive care (e.g., hydration, cooling measures), dopamine agonists (if appropriate). | Avoid future use of offending medication. |
| Serotonin syndrome | Discontinue offending medication; ensure ABCs; monitor vital signs. |
Cyproheptadine (for serotonin receptor antagonism), supportive care (e.g., hydration, cooling measures). | Discontinue offending medication, avoid future use of serotonergic drugs. |
| Malignant catatonia | Ensure ABCs; monitor vital signs; consider benzodiazepines or ECT. | Benzodiazepines (e.g., lorazepam, diazepam), ECT (if severe or unresponsive to medications). | Supportive care, avoid precipitating factors. |
| Status dystonicus | Ensure ABCs; monitor vital signs; administer anticholinergics or benzodiazepines. | Anticholinergics (e.g., benztropine, trihexyphenidyl), benzodiazepines (e.g., lorazepam, diazepam). | Supportive care, avoid precipitating factors. |
| Myoclonus | Ensure ABCs; monitor vital signs; consider anticonvulsants or neuroleptics. | Anticonvulsants (e.g., valproic acid, clonazepam), neuroleptics (e.g., risperidone, haloperidol). | Supportive care, avoid precipitating factors. |
| Tics | Ensure ABCs; monitor vital signs; consider temporary use of alpha-blockers or antipsychotics. | Alpha-blockers (e.g., clonidine, guanfacine), antipsychotics (e.g., risperidone, haloperidol). |
Behavioral therapy, deep brain stimulation. |
| Chorea and ballism | Ensure ABCs; monitor vital signs; adjust medication dosage. | Antipsychotics (e.g., risperidone, haloperidol). | Supportive care, avoid precipitating factors. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
