Submitted:
14 December 2024
Posted:
16 December 2024
You are already at the latest version
Abstract
The northeastern region of India is one of the six most seismically active convergent plate tectonic areas in the world. The north-south convergence along the Indo-Tibetan Himalayan Ranges and the east-west subduction within the Indo-Burma Ranges create a complex stress regime, resulting in significant seismic activity and a history of great/large earthquakes. The region's intricate strain patterns, active faults, and potential seismic gaps underscore the need for detailed subsurface studies to effectively assess seismic hazards and impending seismicity. Geophysical research is essential for understanding the region’s geodynamic evolution, seismotectonics, and mineral resources. This manuscript reviews the geological and tectonic settings of the region and summarizes recent geophysical studies, including seismic, gravity, magnetic, and magnetotelluric surveys conducted in the Assam Valley and adjacent areas (within latitudes 24.5°–28.5° N and longitudes 89°–97.5° E). The review highlights key findings on hydrocarbon-bearing sediments, the configuration of the crystalline basement, the heterogeneous structures of the crust and upper mantle, and seismic discontinuities. By synthesizing these results, the review aims to enhance the understanding of seismic hazards in Northeast India, guide mitigation strategies, and identify key knowledge gaps to direct future research efforts.

Keywords:
1. Introduction
2. Regional Geological Setting
3. Tectonic Setting and Seismicity


4. Mineral Resources
5. Geophysical Exploration of Sedimentary Deposits
6. Geophysical Studies of Basement Configuration
7. Geophysical Studies of the Crust and Mantle
7.1. Crustal Thickness
7.2. Seismic Studies of the Lithosphere

7.3. Seismic Studies of the Upper Mantle
7.4. Seismic Anisotropy
7.5. Gravity and Magnetic Studies
7.6. Magnetotelluric Studies
8. Discussion
- Geophysical studies have identified significant variations in sedimentary thickness across the Assam Valley, ranging from 0.5 to 6.5 km, with thickness increasing from southwest to northeast. However, research has primarily focused on the Upper Assam Valley, south of the Brahmaputra River. Further detailed exploration in the Eastern Himalayan and Mishmi foothills, Naga-Schuppen belt, and southward along the Assam-Arakan Fold Belt could offer new insights into hydrocarbon and mineral exploration potential. Additionally, refining shallow structural details could improve earthquake localization, enhance ground motion simulations, and better assess potential damage from impending large earthquakes.
- The relative seismic quietness of the Upper Assam Basin raises questions. The concept of the “Assam Gap”, which suggests a zone of high accumulated stress that could lead to a future great earthquake, requires further validation through deep geophysical and paleoseismological studies.
- Limited research has been conducted on the 1897 Shillong Plateau earthquake area and the hidden Oldham Fault, whose location and geometry remain debated. Further investigation is needed to clarify the northern boundary of the Shillong Plateau, which may be defined by the Brahmaputra or Oldham Fault. Understanding these features could provide insights into the uplift mechanisms of the Shillong Plateau. Additionally, comprehensive studies of the Dauki Fault, the southern boundary of the Shillong Plateau, are necessary to understand its kinematics, east-west variations, and the potential underthrusting of Bengal Basin sediments beneath the plateau.
- The Kopili fault, one of the most active and hazardous zones within the Assam Valley, requires detailed study of its deep roots and geometry. Additionally, the differing interpretations of the extent and position of the Bomdila Fault across various studies highlight the need for further investigation.
- Studies on crustal and upper mantle velocity structures are essential for enhancing our understanding of tectonic evolution and seismic activity. Passive seismological studies indicate a thinner crust beneath the Shillong Plateau and Mikir Hills (33-37 km), with an increase in thickness in the Assam Valley (35-42 km) and further thickening in the Himalaya and Assam Syntaxis (40-43 km) and the Indo-Burma Ranges (42-50 km). However, the geometry and spatial extent of localized crustal anomalies, identified by variations in seismic velocities, require further study. Additionally, estimates of mantle seismic discontinuities, including the depth of the lithosphere-asthenosphere boundary and its significant uplift beneath the Shillong Plateau, show varying results. Despite a robust seismic network in NE India, increased station coverage may be necessary to address the region’s complexity.
- Recent gravity studies in the region have provided promising results. Further analysis of high-precision gravity and magnetic surveys at a scale of 1:50,000, currently being conducted by the Geological Survey of India, will provide deeper insights into the region’s subsurface structure.
- Many of the identified gaps could be addressed through large-scale broadband and long-period MT studies, which are currently limited in the region. By providing detailed electrical resistivity models across a wide range of depths, these studies can offer valuable insights into subsurface lithology, fluid content, thermal state, and deep fault geometry.
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, M.; Bansal, B.K. Active Fault Research in India: Achievements and Future Perspective. Geomatics, Natural Hazards and Risk 2016, 7, 65–84. [CrossRef]
- Pandey, A.K.; Chingtham, P.; Roy, P.N.S. Homogeneous Earthquake Catalogue for Northeast Region of India Using Robust Statistical Approaches. Geomatics, Natural Hazards and Risk 2017, 8, 1477–1491. [CrossRef]
- Phukan, A.; Mohanty, D.D. Seismic Hazard Estimation and Medium-Term Earthquake Precursor Analysis of North East India: An Assessment on Large Earthquake Scenario. All Earth 2023, 35, 46–64. [CrossRef]
- Nandy, D.R. Geodynamics of North Eastern India and the Adjoining Region; ACB. Publ.: Kolkata, 2001;
- Kayal, J. Seismicity of Northeast India and Surroundings – Development over the Past 100 Years. Journal of Geophysics 1998, 19, 9–34.
- Subedi, S.; Hetényi, G. Precise Locating of the Great 1897 Shillong Plateau Earthquake Using Teleseismic and Regional Seismic Phase Data. The Seismic Record 2021, 1, 135–144. [CrossRef]
- Coudurier-Curveur, A.; Tapponnier, P.; Okal, E.; Van Der Woerd, J.; Kali, E.; Choudhury, S.; Baruah, S.; Etchebes, M.; Karakaş, Ç. A Composite Rupture Model for the Great 1950 Assam Earthquake across the Cusp of the East Himalayan Syntaxis. Earth and Planetary Science Letters 2020, 531, 115928. [CrossRef]
- Kayal, J.R.; Arefiev, S.S.; Baruah, S.; Hazarika, D.; Gogoi, N.; Gautam, J.L.; Baruah, S.; Dorbath, C.; Tatevossian, R. Large and Great Earthquakes in the Shillong Plateau-Assam Valley Area of Northeast India Region: Pop-up and Transverse Tectonics. Tectonophysics 2012, 532–535, 186–192. [CrossRef]
- Shukla, N.; Hazarika, D.; Kundu, A.; Mukhopadhyay, S. Spatial Variations of Crustal Thickness and Poisson’s Ratio in the Northeastern Region of India Based on Receiver Function Analysis. Geological Journal 2022, 57, 5083–5096. [CrossRef]
- Bureau of Indian Standards, CED 39 IS 1893, Part 1; 2016.
- Bhattacharya, B.; Conway, C.; Solomatine, D.; Masih, I.; Craven, J.; Mazumder, L.C.; Mazzoleni, M.; Ugay, R.; Van Andel, S.J.; Shrestha, S. Hydrological and Erosion Modelling of the Brahmaputra Basin Using Global Datasets. In Proceedings of the HIC 2018. 13th International Conference on Hydroinformatics; EasyChair, 2018; Vol. 3, pp. 245–237.
- Saikia, S.; Chopra, S.; Baruah, S.; Singh, U.K. Shallow Sedimentary Structure of the Brahmaputra Valley Constraint from Receiver Functions Analysis. Pure Appl. Geophys. 2017, 174, 229–247. [CrossRef]
- Khattri, K.; Wyss, M.; Gaur, V.K.; Saha, S.N.; Bansal, V.K. Local Seismic Activity in the Region of the Assam Gap, Northeast India. Bulletin of the Seismological Society of America 1983, 73, 459–469. [CrossRef]
- Khattri, K.; Wyss, M. Precursory Variation of Seismicity Rate in the Assam Area, India. Geology 1978, 6, 685–688. [CrossRef]
- Kayal, J.R.; De, R. Microseismicity and Tectonics in Northeast India. Bulletin of the Seismological Society of America 1991, 81, 131–138. [CrossRef]
- Mukhopadhyay, M. Seismotectonics of Transverse Lineaments in the Eastern Himalaya and Its Foredeep. Tectonophysics 1984, 109, 227–240. [CrossRef]
- Rajendran, K.; Rajendran, C.P. Revisiting the Earthquake Sources in the Himalaya: Perspectives on Past Seismicity. Tectonophysics 2011, 504, 75–88. [CrossRef]
- Barman, S. The Seismicity Of North East India- Its Strain Release, Accumulation And Potentiality And Seismic Indifference In The Assam Gap: An Analysis. International Journal of Aquatic Science 2021, 12.
- Srivastava, H.N.; Verma, M.; Bansal, B.K.; Sutar, A.K. Discriminatory Characteristics of Seismic Gaps in Himalaya. Geomatics, Natural Hazards and Risk 2015, 6, 224–242. [CrossRef]
- GEBCO The GEBCO_2024 Grid - a Continuous Terrain Model of the Global Oceans and Land. 2024.
- GSI Bhukosh Rivers Available online: https://bhukosh.gsi.gov.in (accessed on 13 June 2024).
- Sahoo, M.; Gogoi, K.D. Paleocene to Holocenestructure, Stratigraphic Development and Hydrocarbon Accumulation in Upper Assam Foreland Basin, India. Assoc.Petrol. Geol. Bull. 2010, 633–646.
- Bezbaruah, D.; Goswami, T.K.; Sarmah, R.K. The Upper Assam Basin, Its Evolution, and Modification: A Review. In Handbook of Petroleum Geoscience; Mukherjee, S., Dasgupta, S., Majumdar, C., Mandal, S., Dasgupta, T., Eds.; Wiley, 2022; pp. 280–299 ISBN 978-1-119-68003-1.
- Borgohain, R.; Sarmah, R.K. Lithostratigraphy of the Paleogene Shelf Sediments in Assam and Meghalaya – A Review. Indian Streams Research Journal 2012, 2, 1–17.
- Choudhuri, M.; Routray, P.; Jana, B.; Mathur, S. Timing the Mikir Hill Uplift in Assam Basin: Record of Stress Propagation along the Eastern Margin of the Indian Plate. Journal of Asian Earth Sciences: X 2023, 9, 100137. [CrossRef]
- Das Gupta, A.B.; Biswas, A.K. Geology of Assam; 1st ed.; Geological Society of India: Bangalore, 2000; ISBN 978-81-85867-44-1.
- Deshpande, S.V.; Goel, S.M.; Bhandari, A.; Barua, R.M.; Deshpande, J.S.; Kumar, A.; Rana, K.S.; Chitrao, A.M.; Giridhar, M.; Chaudhuri, D.; et al. Lithostratigraphy of Indian Petroliferous Basins; Document X-Assam-Arakan basins. Unpubld. ONGC document; 1993.
- Evans, P. The Tectonic Framework of Assam. Journal of Geological Society of India 1964, 5, 80–96.
- Evans, P. Tertiary Succession in Assam. Trans. Min. Geol. Inst. India 1932, 5, 155–260.
- GSI Geology and Mineral Resources of Assam; Miscellaneous Publication; 3rd ed.; Geo. Surv. India, 2019; Vol. 2(I);
- Kumar, P.C.; Kumar, J.; Sain, K. Cenozoic Tectonic Subsidence in the Upper Assam Basin, NE India. Geosystems and Geoenvironment 2024, 3, 100223. [CrossRef]
- Narayan, S.; Singh, R.; Mohan, A.; Vivek, K.; Acharya, P.; Pal, S.K. Delineation of Thin and Discrete Sand Reservoir Facies from Shale-Dominated Kopili Formation (Middle to Late Eocene) Using the Post-Stack Seismic Inversion and Neural Network Algorithm: A Case Study from Assam Basin, India. J Earth Syst Sci 2023, 132, 81. [CrossRef]
- Srivastava, R.K.; Guarino, V.; Melluso, L. Early Cretaceous Ultramafic-Alkaline-Carbonatite Magmatism in the Shillong Plateau-Mikir Hills, Northeastern India – a Synthesis. Miner Petrol 2023, 117, 447–466. [CrossRef]
- Saha, A.; Ganguly, S.; Ray, J.; Koeberl, C.; Thöni, M.; Sarbajna, C.; Sawant, S.S. Petrogenetic Evolution of Cretaceous Samchampi-Samteran Alkaline Complex, Mikir Hills, Northeastern India: Implications on Multiple Melting Events of Heterogeneous Plume and Metasomatized Sub-Continental Lithospheric Mantle. Gondwana Research 2017, 48, 237–256. [CrossRef]
- Vadlamani, R.; Wu, F.-Y.; Ji, W.-Q. Detrital Zircon U–Pb Age and Hf Isotopic Composition from Foreland Sediments of the Assam Basin, NE India: Constraints on Sediment Provenance and Tectonics of the Eastern Himalaya. Journal of Asian Earth Sciences 2015, 111, 254–267. [CrossRef]
- Wu, X.; Hu, J.; Chen, L.; Liu, L.; Liu, L. Paleogene India-Eurasia Collision Constrained by Observed Plate Rotation. Nat Commun 2023, 14, 7272. [CrossRef]
- Mohan, M.; Pandey, J. Early Paleogene Eco-Stratigraphy of Upper Assam. Bull. Indian Geol. Assoc. 1973, 6, 47–62.
- Bezbaruah, D.; Mujamil, S. Deposition History of Coal Bearing Tikak Parbat Formation of Barail Group in a Part of the Belt of Schuppen, Northeast India. South East Asian Journal of Sedimentary Basin Research 2013, 1, 50–66.
- Singh, A.P.; Mishra, O.P.; Singh, O.P. Seismic Evidence of Pop-up Tectonics beneath the Shillong Plateau Area of Northeast India. Scientific Reports 2022, 12, 14135. [CrossRef]
- Uddin, A.; Lundberg, N. A Paleo-Brahmaputra? Subsurface Lithofacies Analysis of Miocene Deltaic Sediments in the Himalayan–Bengal System, Bangladesh. Sedimentary Geology 1999, 123, 239–254. [CrossRef]
- Mitra, S.; Priestley, K.; Bhattacharyya, A.K.; Gaur, V.K. Crustal Structure and Earthquake Focal Depths beneath Northeastern India and Southern Tibet. Geophysical Journal International 2005, 160, 227–248. [CrossRef]
- Raoof, J.; Mukhopadhyay, S.; Koulakov, I.; Kayal, J.R. 3-D Seismic Tomography of the Lithosphere and Its Geodynamic Implications beneath the Northeast India Region. Tectonics 2017, 36, 962–980. [CrossRef]
- Ravi Kumar, Ch.A.; Selin Raj, A.; Pathak, B.; Maiti, S.; Naganjaneyulu, K. High Density Crustal Intrusive Bodies beneath Shillong Plateau and Indo Burmese Range of Northeast India Revealed by Gravity Modeling and Earthquake Data. Physics of the Earth and Planetary Interiors 2020, 307. [CrossRef]
- Dubey, A.K.; Singh, A.; Kumar, M.R.; Jana, N.; Sarkar, S.; Saikia, D.; Singh, C. Tomographic Imaging of the Plate Geometry Beneath the Arunachal Himalaya and Burmese Subduction Zones. Geophysical Research Letters 2022, 49, e2022GL098331. [CrossRef]
- Earnest, A.; Sunilkumar, T.C.; Silpa, K. Sinking Slab Stress and Seismo-Tectonics of the Indo-Burmese Arc: A Reappraisal. Tectonics 2021, 40, e2021TC006827. [CrossRef]
- Wang, C.; Mooney, W.D.; Zhu, L.; Wang, X.; Lou, H.; You, H.; Cao, Z.; Chang, L.; Yao, Z. Deep Structure of the Eastern Himalayan Collision Zone: Evidence for Underthrusting and Delamination in the Postcollisional Stage. Tectonics 2019, 38, 3614–3628. [CrossRef]
- Ding, L.; Zhong, D.; Yin, A.; Kapp, P.; Harrison, T.M. Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters 2001, 192, 423–438. [CrossRef]
- Zhang, L.; Liang, S.; Yang, X.; Dai, C. The Migration of the Crustal Deformation Peak Area in the Eastern Himalayan Syntaxis Inferred from Present-Day Crustal Deformation and Morpho-Tectonic Markers. Geodesy and Geodynamics 2021, 12, 165–174. [CrossRef]
- Sharma, M.; Malik, H. Probabilistic Seismic Hazard Analysis and Estimation of Spectral Strong Ground Motion on Bed Rock in North East India. In Proceedings of the 4th International Conference on Earthquake Engineering; Taipei, Taiwan, 2006.
- Sil, A.; Sitharam, T.G.; Kolathayar, S. Probabilistic Seismic Hazard Analysis of Tripura and Mizoram States. Natural Hazards 2013, 68, 1089–1108. [CrossRef]
- Das, R.; Sharma, M.L.; Wason, H.R. Probabilistic Seismic Hazard Assessment for Northeast India Region. Pure and Applied Geophysics 2016, 173, 2653–2670. [CrossRef]
- Baro, O.; Kumar, A.; Ismail-Zadeh, A. Seismic Hazard Assessment of the Shillong Plateau, India. Geomatics, Natural Hazards and Risk 2018, 9, 841–861. [CrossRef]
- Angelier, J.; Baruah, S. Seismotectonics in Northeast India: A Stress Analysis of Focal Mechanism Solutions of Earthquakes and Its Kinematic Implications. Geophysical Journal International 2009, 178, 303–326. [CrossRef]
- Jade, S.; Shrungeshwara, T.S.; Kumar, K.; Choudhury, P.; Dumka, R.K.; Bhu, H. India Plate Angular Velocity and Contemporary Deformation Rates from Continuous GPS Measurements from 1996 to 2015. Sci Rep 2017, 7, 11439. [CrossRef]
- Rawat, G.; Luirei, K. Deep Crustal Resistivity Structure of the Lohit Valley in the Eastern Himalayan Syntaxial Region. Geological Journal 2022, 57, 4920–4928. [CrossRef]
- Dasgupta, S.; Mukhopadhyay, B.; Mukhopadhyay, M.; Pande, P. Geo- and Seismo- Tectonics of Eastern Himalaya: Exploring Earthquake Source Zones from Foredeep to Tibetan Hinterland. Physics and Chemistry of the Earth, Parts A/B/C 2021, 123, 103013. [CrossRef]
- Bhadran, A.; Duarah, B.P.; Girishbai, D.; Atif Raza, M.; Mero, A.; Lahon, S.; A.l, A.; Gopinath, G. Soft Sediment Deformation Structures from the Brahmaputra Basin: A Window to the Eastern Himalayan Paleoseismicity and Tectonics. Journal of Asian Earth Sciences 2024, 259, 105894. [CrossRef]
- Kothyari, G.Ch.; Malik, K.; Dumka, R.K.; Naik, S.P.; Biswas, R.; Taloor, A.K.; Luirei, K.; Joshi, N.; Kandregula, R.S. Identification of Active Deformation Zone Associated with the 28th April 2021 Assam Earthquake (Mw 6.4) Using the PSInSAR Time Series. Journal of Applied Geophysics 2022, 206, 104811. [CrossRef]
- England, P.; Bilham, R. The Shillong Plateau and the Great 1897 Assam Earthquake. Tectonics 2015, 34, 1792–1812. [CrossRef]
- Goswami, T.K.; Gogoi, M.; Mahanta, B.N.; Mukherjee, S.; Saikia, H.; Shaikh, M.A.; Kalita, P.; Baral, U.; Sarmah, R.K. Brittle Tectonics in the Western Arunachal Himalayan Frontal Fold Belt, Northeast India: Change in Stress Regime from Pre-collisional Extension to Collisional Compression. Geological Journal 2022, 57, 5019–5038. [CrossRef]
- Mallick, R.; Lindsey, E.O.; Feng, L.; Hubbard, J.; Banerjee, P.; Hill, E.M. Active Convergence of the India-Burma-Sunda Plates Revealed by a New Continuous GPS Network. Journal of Geophysical Research: Solid Earth 2019, 124, 3155–3171. [CrossRef]
- Paul, J.; Bürgmann, R.; Gaur, V.K.; Bilham, R.; Larson, K.M.; Ananda, M.B.; Jade, S.; Mukal, M.; Anupama, T.S.; Satyal, G.; et al. The Motion and Active Deformation of India. Geophysical Research Letters 2001, 28, 647–650. [CrossRef]
- Vernant, P.; Bilham, R.; Szeliga, W.; Drupka, D.; Kalita, S.; Bhattacharyya, A.K.; Gaur, V.K.; Pelgay, P.; Cattin, R.; Berthet, T. Clockwise Rotation of the Brahmaputra Valley Relative to India: Tectonic Convergence in the Eastern Himalaya, Naga Hills, and Shillong Plateau. Journal of Geophysical Research: Solid Earth 2014, 119, 6558–6571. [CrossRef]
- Barman, P.; Jade, S.; Shrungeshwara, T.S.; Kumar, A.; Bhattacharyya, S.; Ray, J.D.; Jagannathan, S.; Jamir, W.M. Crustal Deformation Rates in Assam Valley, Shillong Plateau, Eastern Himalaya, and Indo-Burmese Region from 11 Years (2002–2013) of GPS Measurements. Int J Earth Sci (Geol Rundsch) 2017, 106, 2025–2038. [CrossRef]
- Jade, S.; Mukul, M.; Bhattacharyya, A.K.; Vijayan, M.S.M.; Jaganathan, S.; Kumar, A.; Tiwari, R.P.; Kumar, A.; Kalita, S.; Sahu, S.C.; et al. Estimates of Interseismic Deformation in Northeast India from GPS Measurements. Earth and Planetary Science Letters 2007, 263, 221–234. [CrossRef]
- Mahesh, P.; Catherine, J.K.; Gahalaut, V.K.; Kundu, B.; Ambikapathy, A.; Bansal, A.; Premkishore, L.; Narsaiah, M.; Ghavri, S.; Chadha, R.K.; et al. Rigid Indian Plate: Constraints from GPS Measurements. Gondwana Research 2012, 22, 1068–1072. [CrossRef]
- USGS ANSS Comprehensive Earthquake Catalog (ComCat) Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 1 August 2024).
- Albini, P.; Musson, R.M.W.; Rovida, A.; Locati, M.; Gomez Capera, A.A.; Viganò, D. The Global Earthquake History. Earthquake Spectra 2014, 30, 607–624. [CrossRef]
- Joshi, M.; Naik, S.P.; Mohanty, A.; Bhadran, A.; Girishbai, D.; Ghosh, S. First Hand Observations from the April 28, 2021 Sonitpur (MW 6.4) Earthquake, Assam, India: Possible Mechanism Involved in the Occurrence of Widespread Ground Effects. Geosci J 2023, 27, 225–239. [CrossRef]
- Lakshmi, B.V.; Baba, Md.M.; Gawali, P.B. Investigation of Past Earthquakes in the Kopili Fault Zone, NE India: New Evidence of Paleoliquefaction. Nat Hazards 2023, 119, 2113–2131. [CrossRef]
- Rakshit, K.; Rakshit, R. Study of 28th April, 2021 Mw 6.0 Assam Earthquake in a Part of Eastern Himalayan Foreland Region, Northeast India. Environ Earth Sci 2022, 81, 368. [CrossRef]
- Sharma, V.; Biswas, R. Seismic Hazard Assessment and Source Zone Delineation in Northeast India: A Case Study of the Kopili Fault Region and Its Vicinity. Indian Geotech J 2024, 54, 598–626. [CrossRef]
- Kayal, J.R.; Arefiev, S.S.; Baruah, S.; Tatevossian, R.; Gogoi, N.; Sanoujam, M.; Gautam, J.L.; Hazarika, D.; Borah, D. The 2009 Bhutan and Assam Felt Earthquakes (Mw 6.3 and 5.1) at the Kopili Fault in the Northeast Himalaya Region. Geomatics, Natural Hazards and Risk 2010, 1, 273–281. [CrossRef]
- Sharma, S.; Sarma, J.; Baruah, S. Dynamics of Mikir Hills Plateau and Its Vicinity: Inferences on Kopili and Bomdila Faults in Northeastern India through Seismotectonics, Gravity and Magnetic Anomalies. Annals of Geophysics 2018, 61. [CrossRef]
- Bora, N.; Büyükakpınar, P.; Das, S. 3D Structural Modelling of the Kopili Fault Zone in North-East India: Seismotectonic Analysis Utilising Focal Mechanism Solutions of Small-to-Moderate Earthquakes. Journal of Asian Earth Sciences 2024, 276, 106348. [CrossRef]
- Barman, P.; Ray, J.D.; Kumar, A.; Chowdhury, J.D.; Mahanta, K. Estimation of Present-Day Inter-Seismic Deformation in Kopili Fault Zone of North-East India Using GPS Measurements. Geomatics, Natural Hazards and Risk 2016, 7, 586–599. [CrossRef]
- Sutar, A.K.; Verma, M.; Pandey, A.P.; Bansal, B.K.; Rajendra Prasad, P.; Rama Rao, P.; Sharma, B. Assessment of Maximum Earthquake Potential of the Kopili Fault Zone in Northeast India and Strong Ground Motion Simulation. Journal of Asian Earth Sciences 2017, 147, 439–451. [CrossRef]
- Goswami, T.K.; Kalita, P.; Mukherjee, S.; Mahanta, B.N.; Sarmah, R.K.; Laishram, R.; Saikia, H.; Gogoi, M.; Machahary, R.; Oza, B. Basement Cross-Strike Bomdila Fault beneath Arunachal Himalaya: Deformation along Curved Thrust Traces, Seismicity, and Implications in Hydrocarbon Prospect of the Gondwana Sediments. Geological Journal 2022, 57, 4974–4999. [CrossRef]
- Sarma, J.N.; Sharma, S. Neotectonic Activity of the Bomdila Fault in Northeastern India from Geomorphological Evidences Using Remote Sensing and GIS. Journal of Earth System Science 2018, 127, 113. [CrossRef]
- Walia, D.; Chaudhary, S. Geology and Mineral Resources of Meghalaya. In Geo-Resources; Scientific Publishers, 2014 ISBN 978-81-7233-895-4.
- GSI Geology and Mineral Resources of Meghalaya; Miscellaneous Publication; 3rd ed.; Geo. Surv. India, 2023; Vol. 2(II);
- Double M, S.; Walia, D.; Saxena, A.; Lyngdoh, A.C. Assessing the Seismicity of Shillong Plateau Using “b Value.” Int J Earth Sci Geophys 2021, 7. [CrossRef]
- Lyngdoh, A.C. Study of Seismicity and Active Tectonics in the South Eastern Part of the Shillong Plateau, North-Eastern Hill University, 2013.
- Baro, O.; Kumar, A. Seismic Source Characterization for the Shillong Plateau in Northeast India. J Seismol 2017, 21, 1229–1249. [CrossRef]
- Mitra, S.; Priestley, K.F.; Borah, K.; Gaur, V.K. Crustal Structure and Evolution of the Eastern Himalayan Plate Boundary System, Northeast India. Journal of Geophysical Research: Solid Earth 2018, 123, 621–640. [CrossRef]
- Gokarn, S.G.; Gupta, G.; Walia, D.; Sanabam, S.S.; Hazarika, N. Deep Geoelectric Structure over the Lower Brahmaputra Valley and Shillong Plateau, NE India Using Magnetotellurics. Geophysical Journal International 2008, 173. [CrossRef]
- Kayal, J.R.; Arefiev, S.S.; Barua, S.; Hazarika, D.; Gogoi, N.; Kumar, A.; Chowdhury, S.N.; Kalita, S. Shillong Plateau Earthquakes in Northeast India Region: Complex Tectonic Model. Current Science 2006, 91, 109–114.
- Nayak, G.K.; Rao, V.K.; Rambabu, H.V.; Kayal, J.R. Pop-up Tectonics of the Shillong Plateau in the Great 1897 Earthquake (Ms 8.7): Insights from the Gravity in Conjunction with the Recent Seismological Results. Tectonics 2008, 27. [CrossRef]
- Rajendran, C.P.; Rajendran, K.; Duarah, B.P.; Baruah, S.; Earnest, A. Interpreting the Style of Faulting and Paleoseismicity Associated with the 1897 Shillong, Northeast India, Earthquake: Implications for Regional Tectonism. Tectonics 2004, 23, 2003TC001605. [CrossRef]
- Sukhija, B.S.; Reddy, D.V.; Kumar, D.; Nagabhushanam, P. Comment on “Interpreting the Style of Faulting and Paleoseismicity Associated with the 1897 Shillong, Northeast India, Earthquake: Implications for Regional Tectonism” by C. P. Rajendran et Al. Tectonics 2006, 25. [CrossRef]
- Hazarika, D.; Kundu, A.; Ghosh, P. Seismotectonic Scenario of the Indenting Northeast Corner of the Indian Plate in the Tidding-Tuting Suture Zone of the Eastern Himalayan Syntaxis. Tectonophysics 2022, 824, 229197. [CrossRef]
- Saikia, A. Imperialism, Geology and Petroleum: History of Oil in Colonial Assam. Economic & Political Weekly 2011, 46, 48–55.
- Visvanath, S.N. A Hundred Years of Oil a Narrative Account of the Search for Oil in India; 1997;
- Kent, W.N.; Dasgupta, U. Structural Evolution in Response to Fold and Thrust Belt Tectonics in Northern Assam. A Key to Hydrocarbon Exploration in the Jaipur Anticline Area. Marine and Petroleum Geology 2004, 21, 785–803. [CrossRef]
- Gogoi, T.; Chatterjee, R. Estimation of Petrophysical Parameters Using Seismic Inversion and Neural Network Modeling in Upper Assam Basin, India. Geoscience Frontiers 2019, 10, 1113–1124. [CrossRef]
- Majumdar, D.; Devi, A. Oilfield Geothermal Resources of the Upper Assam Petroliferous Basin, NE India. Energy Geoscience 2021, 2, 246–253. [CrossRef]
- DGH Assam-Arakan Basin | Directorate General of Hydrocarbons Available online: https://dghindia.gov.in/index.php/page?pageId=67%26name=Indian%2520Geology (accessed on 6 August 2024).
- Wandrey, C.J. Sylhet-Kopili/Barail-Tipam Composite Total Petroleum System, Assam Geologic Province, India; U.S. Geological Survey Bulletin 2208-D; U.S. Department of the Interior, U.S. Geological Survey, 2004;
- Chabukdhara, M.; Singh, O.P. Coal Mining in Northeast India: An Overview of Environmental Issues and Treatment Approaches. International Journal of Coal Science and Technology 2016, 3, 87–96. [CrossRef]
- Aranha, M.; Porwal, A.; González-Álvarez, I. Targeting REE Deposits Associated with Carbonatite and Alkaline Complexes in Northeast India. Ore Geology Reviews 2022, 148, 105026. [CrossRef]
- Mandal, K.; Dasgupta, R. Upper Assam Basin and Its Basinal Depositional History Kanailal Mandal and Rahul Dasgupta. In Proceedings of the 10th Biennial International Conference & Exposition; 2013; pp. 1–7.
- Genovese, F.; Palmeri, A. Wavelet-Based Generation of Fully Non-Stationary Random Processes with Application to Seismic Ground Motions. Mechanical Systems and Signal Processing 2025, 223, 111833. [CrossRef]
- Rai, N.; Singha, D.K.; Chatterjee, R. Assessment of Paleocene to Lower Oligocene Formations and Basement to Estimate the Potential Hydrocarbon Reservoirs Using Seismic Inversion: A Case Study in the Upper Assam Shelf, India. J Petrol Explor Prod Technol 2022, 12, 1057–1073. [CrossRef]
- Kumar, P.C.; Sain, K.; Omosanya, K.O.L. Geometry and Kinematics of Strike-Slip Faults in the Dibrugarh Field of the Upper Assam Foreland Basin, NE India. Marine and Petroleum Geology 2023, 153, 106291. [CrossRef]
- Sangeetha, S.; Raghukanth, S.T.G. Broadband Ground Motion Simulations for Northeast India. Soil Dynamics and Earthquake Engineering 2022, 154, 107120. [CrossRef]
- Borgohain, J.; Borah, K.; Bora, D.K. Sediment Thickness beneath Shillong-Mikir Plateau and Its Adjoining Region of Northeast India Inferred from Teleseismic Receiver Function Modelling. Himalayan Geology 2018, 39, 47–56.
- Kumar, T.S.; Bharali, B.R.; Verma, A.K. Basement Configuration and Structural Style in OIL’s Operational Areas of Upper Assam. 2012.
- Ghosh, G.K.; Basha, S.K.; Kulshreshth, V.K. Integrated Interpretation of Gravity , Magnetic & Seismic Data for Delineation of Basement Configuration in Sadiya Block , Upper Assam , India. In Proceedings of the 8Th Biennail International Conference and Exposition on Petroleun Geophysics; 2008; pp. 2–7.
- Saha, D. Integrated Analysis of Gravity and Magnetic Data in the Upper Assam Shelf and Adjoining Schupen Belt Area-A Critical Review*; 2012;
- Ravi Kumar, C.; Kesiezie, N.; Pathak, B.; Maiti, S.; Tiwari, R.K. Mapping of Basement Structure beneath the Kohima Synclinorium, North-East India via Bouguer Gravity Data Modelling. Journal of Earth System Science 2020, 129. [CrossRef]
- Singh, P. An Integrated Approach in Geophysical Investigation - a Case Study of Kopili Valley, Assam Arakan Basin, India. In Proceedings of the SEG Technical Program Expanded Abstracts 2005; Society of Exploration Geophysicists, January 2005; pp. 659–662.
- Pathak, B.; Syiem, S.M.; Mukherjee, K.; Chakrabortty, G.K. Gravity Magnetic Anomaly and Its Relation to Seismotectonic-Neotectonic Features around Kopili Valley Area, Brahmaputra Basin, Assam. Indian Journal of Geosciences 2014, 68, 401–420.
- Sharma, R.; Gouda, H.C.; Singh, R.K.; Nagaraju, B.V. Structural Study of Meghalaya Plateau through Aeromagnetic Data. Journal of the Geological Society of India 2012, 79, 11–29. [CrossRef]
- Singh, A.; Singh, C.; Kennett, B.L.N. A Review of Crust and Upper Mantle Structure beneath the Indian Subcontinent. Tectonophysics 2015, 644–645, 1–21. [CrossRef]
- Manglik, A.; Gupta, S.; Tiwari, V.M. Geophysical Studies for the Crust and Upper Mantle Structure of the Himalaya: Contributions of CSIR-NGRI. Journal of the Geological Society of India 2021, 97. [CrossRef]
- Paul, H.; Gahalaut, V.K. Internal Structure of India: Perspectives from a Review of the Seismological Imaging Studies from 2020 to 2023. Proc.Indian Natl. Sci. Acad. 2024, 90, 442–455. [CrossRef]
- Rai, S.S.; Prakasam, K.S.; Agrawal, N. Pn Wave Velocity and Moho Geometry in North Eastern India. Proc. Indian Acad. Sci. (Earth Planet Sci.) 1999, 108, 297–304. [CrossRef]
- Kumar, M.R.; Raju, P.S.; Devi, E.U.; Saul, J.; Ramesh, D.S. Crustal Structure Variations in Northeast India from Converted Phases. Geophysical Research Letters 2004, 31, n/a-n/a. [CrossRef]
- Ramesh, D.S.; Ravi Kumar, M.; Uma Devi, E.; Solomon Raju, P.; Yuan, X. Moho Geometry and Upper Mantle Images of Northeast India. Geophysical Research Letters 2005, 32, n/a-n/a. [CrossRef]
- Kosarev, G.L.; Oreshin, S.I.; Vinnik, L.P.; Kiselev, S.G.; Dattatrayam, R.S.; Suresh, G.; Baidya, P.R. Heterogeneous Lithosphere and the Underlying Mantle of the Indian Subcontinent. Tectonophysics 2013, 592, 175–186. [CrossRef]
- Bora, D.K.; Baruah, S.; Biswas, R. Moho Depth Variation in Shillong-Mikir Hills Plateau and Its Adjoining Region of Northeastern India Estimated From Reflected and Converted Waves. Journal of Earthquake Science 2014, 1–25.
- Bora, D.K.; Hazarika, D.; Borah, K.; Rai, S.S.; Baruah, S. Crustal Shear-Wave Velocity Structure beneath Northeast India from Teleseismic Receiver Function Analysis. Journal of Asian Earth Sciences 2014, 90, 1–14. [CrossRef]
- Borah, K.; Bora, D.K.; Goyal, A.; Kumar, R. Crustal Structure beneath Northeast India Inferred from Receiver Function Modeling. Physics of the Earth and Planetary Interiors 2016, 258, 15–27. [CrossRef]
- Anand, A.; Bora, D.K.; Borah, K.; Madhab Borgohain, J. Seismological Evidence of the Hales Discontinuity in Northeast India. Journal of Asian Earth Sciences 2018, 154, 238–247. [CrossRef]
- Agrawal, M.; Das, M.K.; Kumar, S.; Pulliam, J. Mapping Lithospheric Seismic Structure beneath the Shillong Plateau (India) and Adjoining Regions by Jointly Fitting Receiver Functions and Surface Wave Dispersion. Geophysical Journal International 2021, 226, 1645–1675. [CrossRef]
- Kundu, A.; Hazarika, D.; Hajra, S.; Singh, A.K.; Ghosh, P. Crustal Thickness and Poisson’s Ratio Variations in the Northeast India–Asia Collision Zone: Insight into the Tuting-Tidding Suture Zone, Eastern Himalaya. Journal of Asian Earth Sciences 2020, 188, 104099. [CrossRef]
- Kundu, A.; Hazarika, D.; Yadav, D.K.; Ghosh, P. Crustal Thickness and Poisson’s Ratio Variations in the Siang Window and Adjoining Areas of the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences 2022, 231, 105225. [CrossRef]
- Saikia, S.; Baruah, S.; Chopra, S.; Gogoi, B.; Singh, U.K.; Bharali, B. An Appraisal of Crustal Structure of the Indo-Burmese Subduction Region. Journal of Geodynamics 2019, 127, 16–30. [CrossRef]
- Bora, D.K.; Singh, A.P.; Borah, K.; Anand, A.; Biswas, R.; Mishra, O.P. Crustal Structure Beneath the Indo-Burma Ranges from the Teleseismic Receiver Function and Its Implications for Dehydration of the Subducting Indian Slab. Pure Appl. Geophys. 2022, 179, 197–216. [CrossRef]
- Arora, B.R.; Prajapati, S.K.; Saikia, S.; Bansal, B.K. Crustal Structure of Northeast India as Evidenced by Receiver Function Imaging: Tectonic and Geodynamic Implications. Int J Earth Sci (Geol Rundsch) 2024, 113, 733–755. [CrossRef]
- Paul, H.; Mitra, S. Three-Dimensional Crustal Architecture Beneath the Sikkim Himalaya and Its Relationship to Active Deformation. Journal of Geophysical Research: Solid Earth 2017, 122, 7860–7878. [CrossRef]
- Singh, A.; Bhushan, K.; Singh, C.; Steckler, M.S.; Akhter, S.H.; Seeber, L.; Kim, W.-Y.; Tiwari, A.K.; Biswas, R. Crustal Structure and Tectonics of Bangladesh: New Constraints from Inversion of Receiver Functions. Tectonophysics 2016, 680, 99–112. [CrossRef]
- Anand, A.; Borah, K.; Mandal, S.; Bora, D. 3D Crustal Shear Wave Velocity Structure in Northeast India from Joint Inversion of Receiver Function and Rayleigh Wave Group Velocity; Copernicus Meetings, 2024;
- Bhattacharya, P.M.; Mukhopadhyay, S.; Majumdar, R.K.; Kayal, J.R. 3-D Seismic Structure of the Northeast India Region and Its Implications for Local and Regional Tectonics. Journal of Asian Earth Sciences 2008, 33, 25–41. [CrossRef]
- Kayal, J.R.; Zhao, D. Three-Dimensional Seismic Structure beneath Shillong Plateau and Assam Valley, Northeast India. Bulletin of the Seismological Society of America 1998, 88, 667–676. [CrossRef]
- Kumar, A.; Kumar, N.; Mukhopadhyay, S.; Klemperer, S.L. Tomographic Image of Shear Wave Structure of NE India Based on Analysis of Rayleigh Wave Data. Front. Earth Sci. 2021, 9. [CrossRef]
- Devi, E.U.; Kumar, P.; Kumar, M.R. Imaging the Indian Lithosphere beneath the Eastern Himalayan Region: Imaging the Indian Lithosphere. Geophysical Journal International 2011, 187, 631–641. [CrossRef]
- Mishra, O.P. Lithospheric Heterogeneities of Northeast India and Indo-Burma Region: Geodynamic Implications. Geosystems and Geoenvironment 2022, 1, 42. [CrossRef]
- Bilham, R.; England, P. Plateau ‘Pop-up’ in the Great 1897 Assam Earthquake. Nature 2001, 410, 806–809. [CrossRef]
- Rao, N.P.; Kumar, M.R. Uplift and Tectonics of the Shillong Plateau, Northeast India. J,Phys,Earth 1997, 45, 167–176. [CrossRef]
- Chaudhury, J.; Mitra, S. Subcontinental Lithospheric Mantle Discontinuities beneath the Eastern Himalayan Plate Boundary System, NE India. Geophysical Journal International 2023, 233, 2155–2171. [CrossRef]
- Kumar, P.; Kumar, M.R.; Srijayanthi, G.; Arora, K.; Srinagesh, D.; Chadha, R.K.; Sen, M.K. Imaging the Lithosphere-Asthenosphere Boundary of the Indian Plate Using Converted Wave Techniques. Journal of Geophysical Research: Solid Earth 2013, 118, 5307–5319. [CrossRef]
- Priestley, K.; McKenzie, D. The Relationship between Shear Wave Velocity, Temperature, Attenuation and Viscosity in the Shallow Part of the Mantle. Earth and Planetary Science Letters 2013, 381, 78–91. [CrossRef]
- Pasyanos, M.E.; Masters, T.G.; Laske, G.; Ma, Z. LITHO1.0: An Updated Crust and Lithospheric Model of the Earth. JGR Solid Earth 2014, 119, 2153–2173. [CrossRef]
- Srinu, U.; Kumar, P.; Haldar, C.; Kumar, M.R.; Srinagesh, D.; Illa, B. X-Discontinuity Beneath the Indian Shield—Evidence for Remnant Tethyan Oceanic Lithosphere in the Mantle. JGR Solid Earth 2021, 126, e2021JB021890. [CrossRef]
- Saikia, D.; Kumar, M.R.; Singh, A. Palaeoslab and Plume Signatures in the Mantle Transition Zone beneath Eastern Himalaya and Adjoining Regions. Geophysical Journal International 2020, 221, 468–477. [CrossRef]
- Kumar, G.; Singh, A.; Tiwari, A.K.; Singh, C.; Ravi Kumar, M.; Saikia, D.; Uthaman, M.; Dubey, A.K. Alteration in the Mantle Transition Zone Structure beneath Sikkim and Adjoining Himalaya in Response to the Indian Plate Subduction. Journal of Asian Earth Sciences 2023, 255, 105768. [CrossRef]
- Koulakov, I. High-Frequency P and S Velocity Anomalies in the Upper Mantle beneath Asia from Inversion of Worldwide Traveltime Data. Journal of Geophysical Research: Solid Earth 2011, 116. [CrossRef]
- Singh, A.; Kumar, M.R.; Raju, P.S.; Ramesh, D.S. Shear Wave Anisotropy of the Northeast Indian Lithosphere. Geophysical Research Letters 2006, 33, 2006GL026106. [CrossRef]
- Mohanty, D.D.; Singh, A. Shear Wave Birefringence and Current Configuration of Active Tectonics of Shillong Plateau: An Appraisal of Indian Plate Motion and Regional Structures. Int J Earth Sci (Geol Rundsch) 2022, 111, 269–286. [CrossRef]
- Mondal, P.; Mohanty, D.D. Mantle Deformation and Seismic Anisotropy beneath Northeast India Inferred from SKKS Birefringence. Stud Geophys Geod 2021, 65, 36–52. [CrossRef]
- Roy, S.K.; M., R.K.; D., S. Upper and Lower Mantle Anisotropy Inferred from Comprehensive SKS and SKKS Splitting Measurements from India. Earth and Planetary Science Letters 2014, 392, 192–206. [CrossRef]
- Sharma, A.; Baruah, S.; Piccinini, D.; Saikia, S.; Phukan, M.K.; Chetia, M.; Kayal, J.R. Crustal Seismic Anisotropy beneath Shillong Plateau - Assam Valley in North East India: Shear-Wave Splitting Analysis Using Local Earthquakes. Tectonophysics 2017, 717, 425–432. [CrossRef]
- Saikia, D.; Kumar, M.R.; Singh, A.; Roy, S.K.; Raju, P.S.; Lyngdoh, A.C. Mantle Deformation in the Eastern Himalaya, Burmese Arc and Adjoining Regions. Geochem Geophys Geosyst 2018, 19, 4420–4432. [CrossRef]
- Kanaujia, J.; Surve, G. Upper Mantle Deformation beneath the Northeastern Part of Indian Plate from Shear-Wave Splitting Analysis. Geo-Mar Lett 2024, 44, 1. [CrossRef]
- Mohanty, D.D.; Biswal, S.; Phukan, M.K.; Ayodeji, E.A. Possible Depth and Source Localization of Seismic Anisotropy beneath Shillong Plateau and Himalayan Foredeep Region: An Implication towards Deformation Mechanisms. Geological Journal 2022, 57, 5149–5160. [CrossRef]
- Mohanty, D.D.; Mondal, P. Disparate Behaviour of Deformation Patterns beneath Northeast Indian Lithosphere Inferred from Shear Wave Splitting Analysis. Physics of the Earth and Planetary Interiors 2020, 298, 106315. [CrossRef]
- DeMets, C.; Gordon, R.G.; Argus, D.F.; Stein, S. Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions. Geophysical Research Letters 1994, 21, 2191–2194. [CrossRef]
- Ghosh, G.; Dasgupta, R.; B.J.Reddy; S.N.Singh Gravity Data Interpretation across the Brahmaputra Thrust and Dauki Fault in the North-Eastern India. J. of Geophysics 2015, XXXVI, 31–38.
- Ravi Kumar, C.; Kesavan, R.; Ramachandrappa Crustal Heterogeneities and Geothermal Gradients beneath Thrust and Fold Belts of Northeast India from Scaled Spectral Analysis of Aeromagnetic and Gravity Modelling. Journal of Earth System Science 2022, 131. [CrossRef]
- Mahadevan, T.M. Evolution of the Indian Continental Lithosphere: Insights from Episodes of Crustal Evolution and Geophysical Models. J. Ind. Geophys. Union 2013, 17, 9–38.
- Ghosh, G.K. Interpretation of Gravity Anomaly to Delineate Thrust Faults Locations at the Northeastern Part of India and Its Adjacent Areas Using Source Edge Detection Technique, Tilt Derivative and Cos(θ) Analysis. Acta Geophys. 2019, 67, 1277–1295. [CrossRef]
- Ghosh, G.K. Automatic Thrust/Fault and Edge Location with Gravity Data across the Shillong Plateau and Mikir Hill Complex in Northeastern India Using the Most Positive and Most Negative Curvature Interpretation. Journal of Geophysics and Engineering 2024, 21, 290–303. [CrossRef]
- Abramova, D.Yu.; Abramova, L.M.; Varentsov, I.M. Anomalous Lithospheric Magnetic Field over the Indo-Asian Collision Territory According to CHAMP Satellite Data. Izv. Atmos. Ocean. Phys. 2022, 58, 1077–1085. [CrossRef]
- Rawat, M.; Anand, S.P.; Fathy, A.; Dimri, A.P.; Begum, S.K. Lithospheric Magnetic Anomaly Map of Indian Subcontinent (LAMI-1) from Swarm Satellite Data. J Earth Syst Sci 2024, 133, 180. [CrossRef]
- Berdichevsky, M.N.; Dmitriev, V.I. Models and Methods of Magnetotellurics; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; ISBN 978-3-540-77811-0.
- Chave, A.D.; Jones, A.G. The Magnetotelluric Method: Theory and Practice; Cambridge University Press, 2012; ISBN 978-1-139-02013-8.
- Simpson, F.; Bahr, K. Practical Magnetotellurics; Cambridge University Press, 2005; ISBN 0-521-81727-7.
- Lin, W.; Yang, B.; Han, B.; Hu, X. A Review of Subsurface Electrical Conductivity Anomalies in Magnetotelluric Imaging. Sensors 2023, 23, 1803. [CrossRef]
- Borah, U.K.; Patro, P.K.; Raju, K.; Reddy, K.C.; Babu, N.; Rao, P.R.; Rao, N.P. Role of Fluid on Seismicity of an Intra-Plate Earthquake Zone in Western India: An Electrical Fingerprint from Magnetotelluric Study. Earth, Planets and Space 2023, 75, 149. [CrossRef]
- Harinarayana, T. Applications of Magnetotelluric Studies in India. In Five Decades of Geophysics in India; Memoirs of the Geological Survey of India; Geological Society of India, 2008; Vol. 68, pp. 337–356 ISBN 978-81-85867-85-4.
- Patro, P.K.; Kumar, P.V.V.; Sarma, S.V.S. MT/LMT Studies for Crust and Upper Mantle Structure of India and Its Adjoining Regions: Contribution of CSIR-NGRI. Journal of the Geological Society of India 2021, 97, 1251–1259. [CrossRef]
- Sanabam, S.S. Geophysical Studies of the Deep Crustal Structure of the North East Region Using Magnetotelluric Techniques, North-Eastern Hill University, 2010.
- Varentsov, Iv.M.; Ivanov, P.V.; Lozovsky, I.N.; Bai, D.; Li, X.; Kumar, S.; Walia, D. Geoelectric Models Along the Profile Crossing the Indian Craton, Himalaya and Eastern Tibet Resulted from Simultaneous MT/MV Soundings. In Proceedings of the The Study of Continental Lithosphere Electrical Conductivity, Temperature and Rheology; Zhamaletdinov, A.A., Rebetsky, Y.L., Eds.; Springer International Publishing: Cham, 2019; pp. 72–82.
- Varentsov, Iv.M.; Bai, D.; Ivanov, P.V.; Kumar, S.; Li, X.; Lozovsky, I.N.; Walia, D. First Results of New Simultaneous MT/MV Soundings in the Eastern Tibet and NE India. In Proceedings of the 24th EM Induction Workshop, Helsingør, Denmark, August 13-20, 2018; 2018; pp. 1–4.
- Varentsov, Iv.M.; Bai, D. Geoelectric Model of the Tectonosphere in Eastern Tibet Derived from Long-Period and Broadband MT/MV Sounding Data (Geoelektricheskaya Model Tektonosfery Vostochnogo Tibeta Po Dannym Glubinnykh i Razvedochnykh MT/MV Zondirovaniy). In Proceedings of the Problems of geodynamics and geoecology of intracontinental orogens. Proceedings of the 6th International Symposium; Research Station of the Russian Academy of Sciences: Bishkek, 2015; pp. 1–10.










| Region | Moho Depth (km) | Study Method | Reference |
|---|---|---|---|
| Shillong Plateau | 45–49 | P-arrival times, travel time residual | Rai et al. [117] |
| ~35 | RF analysis | Kumar et al. [118] | |
| 35–38 | RF analysis | Mitra et al. [41] | |
| ~35 | RF analysis | Kosarev et al. [120] | |
| 33–37 | Inversion of travel time residuals | Bora et al. [121] | |
| 34–38 | RF analysis | Bora et al. [122] | |
| 32–36 | Joint inversion of surface wave (SW) dispersion and RF | Borah et al. [123] | |
| 30–35 | Joint inversion of SW dispersion and RF | Anand et al. [124] | |
| ~30 | Joint inversion of SW dispersion and RF | Mitra et al. [85] | |
| 29–35 | Joint inversion of SW dispersion and RF | Agrawal et al. [125] | |
| ~33–40 | RF analysis | Shukla et al. [9] | |
| 35–37 | RF analysis | Arora et al. [130] | |
| Mikir Hills | ~33 | RF analysis | Kumar et al. [118] |
| 37.5–38.5 | Inversion of travel time residuals | Bora et al. [121] | |
| 36 | Joint inversion of SW dispersion and RF | Bora et al. [121] | |
| ~30 | Joint inversion of SW dispersion and RF | Mitra et al. [85] | |
| 34–36 | RF analysis | Shukla et al. [9] | |
| Assam Valley | 40–60 | P-arrival times, travel time residual | Rai et al. [117] |
| ~35 | RF analysis | Kumar et al. [118] | |
| ~35 | RF analysis | Ramesh et al. [119] | |
| 40–42 | RF analysis | Mitra et al. [41] | |
| 35–41 | Inversion of travel time residuals | Bora et al. [121] | |
| 37–38 | RF analysis | Bora et al. [122] | |
| 38–40 | Joint inversion of SW dispersion and RF | Borah et al. [123] | |
| 38–41 | Joint inversion of SW dispersion and RF | Anand et al. [124] | |
| 36–42 | Joint inversion of SW dispersion and RF | Mitra et al. [85] | |
| 35.5 | Joint inversion of SW dispersion and RF | Agrawal et al. [125] | |
| 36.5–41.5 | RF analysis | Shukla et al. [9] | |
| 37-39 | RF analysis | Arora et al. [130] | |
| Arunachal Himalaya | > 45 | RF analysis | Kumar et al. [118] |
| 50 | RF analysis | Ramesh et al. [119] | |
| ~48 | RF analysis | Mitra et al. [41] | |
| 46–48 | RF analysis | Bora et al. [122] | |
| 44 | Joint inversion of SW dispersion and RF | Borah et al. [123] | |
| ~45 | RF analysis | Shukla et al. [9] | |
| 43–45 | RF analysis | Arora et al. [130] | |
| Assam Syntaxis | 50–55 | RF analysis | Kundu et al. [126,127] |
| Naga-Disang thrust | 42–50 | RF analysis | Saikia et al. [128] |
| 42–50 | RF analysis | Bora et al. [129] | |
| 43–46 | RF analysis | Arora et al. [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).