Preprint
Article

This version is not peer-reviewed.

Formal Calculation of Binomial Coefficients

Peng Ji  *

Submitted:

01 December 2024

Posted:

02 December 2024

You are already at the latest version

Abstract
Formal Calculation provides formulas for computing nested sums, offers results for all three forms, and explores the connections between them. It is a powerful tool for studying various numbers in a unified manner, making special numbers of many kinds appear ordinary. Additionally, this paper generalizes Wilson's theorem, Wolstenholme's theorem, and the Eulerian polynomial, demonstrating that they are merely special cases.
Keywords: 
;  ;  ;  ;  

1. Calculation Formula

Definition 1.1. 
Recursively define p , p Z ,
0 f ( n ) = f ( n ) , n = 0 N 1 1 f ( n + 1 ) = f ( N ) , n = 0 N 1 f ( n + 1 ) = 1 f ( N ) , 1 = .
Definition 1.2. 
Recursively define S U M ( N ) = S U M ( N , P S , P T ) , K i , D i C , T i N .
S U M ( N , [ K 1 : D 1 ] , [ T 1 = 1 ] ) = n = 0 N 1 ( K 1 + n D 1 ) .
S U M ( N , [ K 1 : D 1 , K 2 : D 2 ] , [ T 1 , T 2 = T 1 + 2 p ] ) = n = 0 N 1 ( K 2 + n D 2 ) p S U M ( n + 1 , [ K 1 : D 1 ] , [ T 1 ] ) .
Abbreviations: [ K 1 : D , K 2 : D . . . K M : D ] = [ K 1 , K 2 . . . K M ] : D , [ K 1 , K 2 . . . K M ] : 1 = [ K 1 , K 2 . . . K M ] .
S U M ( N , P S , [ 1 , 2 . . . M ] ) = n = 0 N 1 i = 1 M ( K i + n D i ) .
S U M ( N , P S , [ 1 , 3 . . . 2 M 1 ] ) = n M = 0 N 1 ( K M + n M D M ) . . . n 2 = 0 n 3 ( K 2 + n 2 D 2 ) n 1 = 0 n 2 ( K 1 + n 1 D 1 ) .
S U M ( N , P S , [ 1 , 2 , 4 ] ) = n 3 = 0 N 1 ( K 3 + n 3 D 3 ) n = 0 n 3 ( K 1 + n D 1 ) ( K 2 + n D 2 ) .
S U M ( N , P S , [ 1 , 3 , 4 ] ) = n 3 = 0 N 1 ( K 3 + n 3 D 3 ) ( K 2 + n 3 D 2 ) n = 0 n 3 ( K 1 + n D 1 ) .
S U M ( N , P S , [ 1 , 4 ] ) = n 3 = 0 N 1 ( K 2 + n 3 D 2 ) n 2 = 0 n 3 n 1 = 0 n 2 ( K 1 + n 1 D 1 ) .
In this paper, the default PS = [ K 1 : D 1 , K 2 : D 2 . . . K M : D M ] , P T = [ T 1 , T 2 . . . T M ] , T i < T i + 1 .
Use K to represent the set { K i } , T to represent the set { K i } .
( K 1 + T 1 ) ( K 2 + T 2 ) . . . ( K M + T M ) = i = 1 M X i , X i = T i o r K i .
Definition 1.3. 
X ( T ) =Number of { X 1 , X 2 . . . X M } T .
Definition 1.4. 
X T 1 =Number of { X 1 , X 2 . . . X i 1 } T , X K 1 =Number of { X 1 , X 2 . . . X i 1 } K .
Obviously, X T 1 + X K 1 = i 1 . Use the auxiliary form and each X i cannot be exchanged:
Theorem 1.1. 
H = T M M , S U M ( N , P S , P T ) =
F o r m 1 g = 0 M H 1 ( g ) ( N 1 g N + H = g = 0 M H 1 ( g ) ( H + 1 + g N + H , B i = { K i + X T 1 D i , X i = K i ( T i X K 1 ) D i , X i = T i ,
F o r m 2 g = 0 M H 2 ( g ) ( N 1 N + H + g = g = 0 M H 2 ( g ) ( H + 1 + g N + H + g , B i = { K i + ( X K 1 T i ) D i , X i = K i ( T i X K 1 ) D i , X i = T i ,
F o r m 3 g = 0 M H 3 ( g ) ( N 1 g N + T M g = g = 0 M H 3 ( g ) ( T M + 1 N + T M g , B i = { K i + X T 1 D i , X i = K i K i + ( T i X T 1 ) D i , X i = T i .
H i ( g ) = H i ( g , P S , P T ) = H i ( g , M ) , is defined as X ( T ) = g i = 1 M B i .
Proof. 
H 1 ( g ) = H 1 ( g 1 , M 1 ) ( T M [ ( M 1 ) ( g 1 ) ] ) D M + H 1 ( g , M 1 ) ( K M + g D M ) .
n = 0 N 1 n ( M n + K = n = 0 N 1 ( n K + M ) ( M n + K + ( M K ) ( M n + K = ( M + 1 ) ( M + 2 N + K + ( M K ) ( M + 1 N + K .
M = 1, it holds. Suppose that holds when M, P S 1 = [ P S , K M + 1 : D M + 1 ] , P T 1 = [ P T , T M + 1 = T M + 2 p ] .
S U M ( N , P S 1 , P T 1 ) = n = 0 N 1 ( K M + 1 + n D M + 1 ) p S U M ( n + 1 )
= n = 0 N 1 ( K M + 1 + n D M + 1 ) g = 0 M H 1 ( g ) ( T M M + 1 + g p n + 1 + T M M p
= g = 0 M ( K M + 1 + g D M + 1 ) H 1 ( g ) ( T M M + 2 + g p N + 1 + T M M p + g = 0 M ( T M M + 2 + g p ) D M + 1 H 1 ( g ) ( T M M + 3 + g p N + 1 + T M M p
= g = 0 M ( K M + 1 + g D M + 1 ) H 1 ( g ) ( T M + 1 ( M + 1 ) + 1 + g N + T M + 1 ( M + 1 ) + g = 0 M ( T M + 1 ( M g ) ) D M + 1 H 1 ( g ) ( T M + 1 ( M + 1 ) + 2 + g N + T M + 1 ( M + 1 )
= g = 0 M + 1 H 1 ( g , M + 1 ) ( T M + 1 ( M + 1 ) + 1 + g N + T M + 1 ( M + 1 ) . Proof of F o r m 1 completion.
n = 0 N 1 n ( M n + K = ( M + 1 ) ( M + 2 N + K + 1 ( 1 K ) ( M + 1 N + K = ( M K ) ( M + 2 N + K + 1 + ( 1 + K ) ( M + 2 N + K . Prove F o r m 2 , 3 through it. □
For example: F o r m = ( 1 + T 1 ) ( 2 + T 2 ) ( 3 + T 3 ) , X ( T ) = 1 X i = 1 × 2 × T 3 + 1 × T 2 × 3 + T 1 × 2 × 3 .
H 1 ( 1 ) = 1 × 2 × ( T 3 X K 1 ) + 1 × ( T 2 X K 1 ) × ( 3 + X T 1 ) + T 1 × ( 2 + X T 1 ) × ( 3 + X T 1 ) = 1 × 2 × ( 5 2 ) + 1 × ( 3 1 ) × ( 3 + 1 ) + 1 × ( 2 + 1 ) × ( 3 + 1 ) = 26 .
S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 3 , 5 ] ) = 1 × 3 × 5 ( 6 N + 2 + 35 ( 5 N + 2 + 26 ( 4 N + 2 + 1 × 2 × 3 ( 3 N + 2 .
S U M ( N , [ 2 , 3 ] , [ 3 , 5 ] ) = 3 × 5 ( 6 N + 3 + ( 2 × 4 + 3 × 4 ) ( 5 N + 3 + 2 × 3 ( 4 N + 3 .
H 1 ( g ) = H 1 ( g 1 , M 1 ) ( T M [ M g ] ) D M + H 1 ( g , M 1 ) ( K M + g D M ) .
H 2 ( g ) = H 2 ( g 1 , M 1 ) ( T M [ M g ) ] ) D M + H 2 ( g , M 1 ) ( K M + [ M 1 g T M ] D M ) .
H 3 ( g ) = H 3 ( g 1 , M 1 ) ( K M + ( T M [ g 1 ] ) D M ) + H 3 ( g , M 1 ) ( K M + g D M ) .
They can be unified as: H ( g ) = H ( g 1 , M 1 ) B + H ( g , M 1 ) A .
H 1 ( g ) , B = B M + ( g 1 ) D M , A = A M + g D M , A M = K M , B M = T M D M ( M 1 ) D M .
H 2 ( g ) , B = B M + ( g 1 ) D M , A = A M g D M , A M = K M + ( M 1 T M ) D M , B M = T M D M ( M 1 ) D M .
H 3 ( g ) , B = B M ( g 1 ) D M , A = A M + g D M , A M = K M , B M = K M + T M D M .
Consider the general two-dimensional second-order linear recursive equations:
R ( M , g ) = R ( M 1 , g 1 ) ( B M + ( g 1 ) E M ) + R ( M 1 , g ) ( A M + gD M ) . It can be calculated in a similar way to H ( g ) . H ( g ) itself requires | D i | = | E i | and can’t change the sign, so that 3-forms exist.

2. Property

Theorem 2.1.
(1). H 1 ( g ) = k = g M H 2 ( k ) ( g k = k = 0 g H 3 ( k ) ( M g M k .
(2). H 2 ( g ) = k = g M ( 1 ) k + g H 1 ( k ) ( g k , H 3 ( g ) = k = 0 g ( 1 ) k + g H 1 ( k ) ( M g M k .
(3). H 2 ( g ) = ( 1 ) M g k = M g M H 3 ( k ) ( M g k , H 3 ( g ) = ( 1 ) g k = g M H 2 ( M k ) ( g k .
(4). g = 0 M H 1 ( g ) q g ( 1 q ) M g = g = 0 M H 2 ( g ) ( 1 q ) M g = g = 0 M H 3 ( g ) q g
(5). g = 0 M H 1 ( g ) ( Y g X = g = 0 M H 2 ( g ) ( Y X + g = g = 0 M H 3 ( g ) ( Y g X + M g , Y N .
Recursive relations yields (1), inversion yields (2), (4) and (5) can be obtained from (1). (5) shows F o r m 1 = F o r m 2 = F o r m 3 . If we ignore the practical significance, T i C . q X = k = 0 X ( 1 ) k ( 1 q ) k ( k X , ( 1 q ) X = k = 0 X ( 1 ) k q k ( k X and (4) yields (3).
Theorem 2.2.
(1). H 1 ( g , [ A D : D , P S ] , [ A , P T ] ) = A D ( H 1 ( g ) + H 1 ( g 1 ) ) .
(2). S U M ( N , [ L 1 , L 2 . . . L q , P S ] , [ L 1 , L 2 . . . L q , P T ] ) = i = 1 q L i × S U M ( N , P S , P T ) .
(3). S U M ( N , P T , P T ) = T i ( T M + 1 N + T M , H 1 ( g ) = T i ( g M .
(4). In S U M ( N , [ . . . P S . . . ] , [ . . . T , T + 1 . . T + M 1 . . . ] ) , K i : D i can exchange order.
(5). If D i = 1 and K i + 1 K i = T i + 1 T i = 1 , H 1 ( g ) = ( g M T 1 . . . T g × K g + 1 . . . K M .
(1) is obvious, (2) and (3) is derived from (1), so T 1 can great than 1. (3) is the promotion of n = 0 N 1 ( M n + M = ( M + 1 N + M . (4) comes from the definition. (5) can be proved by induction.
Definition 2.1. 
F g K = 1 λ 1 < λ 2 < . . . < λ g M K λ 1 K λ 2 . . . K λ g , F 0 K = 1 , F g N = F g { 1 , 2 . . . N } .
Definition 2.2. 
E g K = 1 λ 1 λ 2 . . . λ g M K λ 1 K λ 2 . . . K λ g , E 0 K = 1 , E g N = E g { 1 , 2 . . . N } .
F M N + M 1 = S 1 ( N + M , N ) , S 1 is unsigned stirling number of the first kind.
E M N = S 2 ( N + M , N ) , S 2 is stirling number of the second kind.
SUM ( N , [ 1 , 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = SUM ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = 1 M + 2 M + . . . + N M ,
SUM ( N , [ 1 , 1 . . . 1 ] , [ 1 , 3 . . . 2 M 1 ] ) = SUM ( N , [ 1 , 1 . . . 1 ] , [ 3 , 5 . . . 2 M 1 ] ) = S 2 ( N + M , N ) ,
SUM ( N , [ 1 , 2 . . . M ] , [ 1 , 3 . . . 2 M 1 ] ) = SUM ( N , [ 2 , 3 . . . M ] , [ 3 , 5 . . . 2 M 1 ] ) = S 1 ( N + M , N ) .
They can be used to calculate S 1 ( N , N M ) and S 2 ( N , N M ) .
In the calculation of H ( g ) , X i = ( X i , X i T ) ( X i , X i K ) .
Definition 2.3. 
H ( g , T ) = H ( g , T , P S , P T ) = H ( g , T , M ) = X i T B i , H ( g , K ) = X i K B i
Obviously, H 1 ( g , K , [ 1 , 1 . . 1 ] , P T ) = E M g g + 1 . P T 1 = [ T , T + 1 . . . T + M 1 ] , P S 1 = [ K + M 1 , K + M 2 . . . K ] ,
D i = 1 , H 1 ( g , P S , P T 1 ) = [ T ] g H ( g , K ) , H 1 ( g , P S 1 , P T ) = [ K + M 1 ] g H ( g , T ) .
Theorem 2.3. 
S = { T i K i i + 1 } , D i = 1
(1). H 1 ( g , K ) = H 3 ( g , K ) = F M g K E 0 g + F M g 1 K E 1 g + . . . + F 0 K E M g g .
(2). H 1 ( g , T ) = H 2 ( g , T ) = F g T E 0 M g F g 1 T E 1 M g + . . . + ( 1 ) g F 0 T E g M g .
(3). H 2 ( g , K ) = ( 1 ) M g ( F M g S E 0 g + . . . + F 0 S E M g g ) .
(4). H 3 ( g , T ) = ( 1 ) g F g S E 0 M g + ( 1 ) g 1 F g 1 S E 1 M g . . . + F 0 S E g M g .
(5). H 1 ( g , K ) = i = 1 M g ( K i + λ i + λ i ) , 0 λ 1 λ 2 . . . λ M g g .
(6). H 1 ( g , T ) = i = 1 g ( T i + λ i λ i ) , 0 λ 1 λ 2 . . . λ g M g .
Proof. 
PS 1 = [ PS , K M + 1 ] , PT 1 = [ PT , T M + 1 ] . Using induction to prove (2).
H 1 ( g , T , M + 1 ) = H 1 ( g , T ) + H 1 ( g 1 , T ) ( T M + 1 ( M g + 1 ) ) .
F g x { PT 1 } in H 1 ( g , T , M + 1 ) has three sources.
= ( 1 ) x F g x T E x M g + ( 1 ) x F ( g 1 ) x T E x M ( g 1 ) T M + 1 + ( 1 ) x 1 F ( g 1 ) ( x 1 ) T E x 1 M ( g 1 ) ( ( M g + 1 ) )
= ( 1 ) x F g x T ( E x M g + E x 1 M + 1 g ( M + 1 g ) ) + ( 1 ) x F g x 1 T E x M + 1 g T M + 1 (*)
= ( 1 ) x F g x T E x M + 1 g + ( 1 ) x F g x 1 T E x M + 1 g T M + 1 = ( 1 ) x E x M + 1 g F g x { PT 1 } .
E x M g + E x 1 M + 1 g ( M + 1 g )
= S 2 ( M g + x , M g ) + ( M + 1 g ) S 2 ( M g + x , M + 1 g )
= S 2 ( M g + x + 1 , M + 1 g ) = E x M + 1 g (*).
(5) and (6) are definitions. □
Definition 2.4. 
F T ( N + M , N ) = F M { T , T + 1 . . . T + N + M 1 } , E T ( N + M , N ) = E M { T , T + 1 . . . T + N 1 } .
Obviously, F 0 ( N + M , N ) = S 1 ( N + M , N ) , E 1 ( N + M , N ) = S 2 ( N + M , N ) , F T ( M + 1 , g + 1 ) = F M g { T , T + 1 . . . T + M } = ( T + M ) F T ( M , g + 1 ) + F T ( M , g ) , E T ( M + 1 , g + 1 ) = E M g { T , T + 1 . . . T + g } = ( T + g ) E T ( M , g + 1 ) + E T ( M , g ) .
Definition 2.5. 
j n T = ( T 1 + n j ) j 1 n 1 T + ( j + 1 ) j n 1 T , 0 1 T = T , 1 1 T = 0 , j n T = 0 , j < 0 , j > n .
Obviously: 0 n 1 = T , n n T = 0 . n > 0 , j n 1 = j n is Eulerian number.
Definition 2.6. 
g M T j = i = 0 j ( 1 ) i g 1 i M j T ( i j , 0 j < g , 0 < g < M .
Theorem 2.4.
(1). P T = [ T , T + 1 . . . T + M 1 ] , H 2 ( g , K ) = j = 0 M g ( 1 ) M g j F j K E M g j { T , T + 1 . . . T + g } .
(2). j = 0 M g F j { T K i } E M g j g = j = 0 M g ( 1 ) j F j K E M g j { T , T + 1 . . . T + g } .
(3). P T = [ T , T + 1 . . . T + M 1 ] , H 3 ( 0 < g < M , K ) = j = 0 M 1 g M T j F j K + ( 1 ) g ( g M F M K .
(4). P S = [ K , K 1 . . . K M + 1 ] , H 2 ( 0 < g < M , T ) = j = 0 M 1 M g M K j F j T + ( 1 ) M g ( g M F M T .
(5). P S = [ K , K 1 . . . K M + 1 ] , H 3 ( g , T ) = j = 0 g ( 1 ) g j F j T E g j { K , K 1 . . . K M + g } .
(6). j = 0 M g F j { K i T } E M g j g = ( 1 ) M g j = 0 M g ( 1 ) j F j K E M g j { T , T 1 . . . T g } .
Proof. 
P T = [ T , T + 1 . . . T + M 1 ] , H 2 ( g , K ) must be is a symmetric function = j = 0 M A M g ( j ) F j K .
H 2 ( 0 , 1 ) = K 1 T , H 2 ( 1 , 1 ) = T . It’s holds when M = 1 .
H 2 ( g , M ) = ( K M T g ) H 2 ( g , M 1 ) + ( T + g 1 ) H 2 ( g 1 , M 1 ) .
A 1 0 ( 0 ) = T , A 1 1 ( 0 ) = T . A M g ( 0 ) = ( T + g ) A M 1 g ( 0 ) + ( T + g 1 ) A M 1 g 1 ( 0 )
A M g ( 0 ) = ( 1 ) M g [ T + g 1 ] g E T ( M + 1 , g + 1 ) = ( 1 ) M g [ T + g 1 ] g E M g { T , T + 1 . . . T + g } .
The rest only need to consider terms that multiply with K M .
A M g ( j ) = A M 1 g ( j 1 ) = A M j g ( 0 ) = ( 1 ) M g j [ T + g 1 ] g E T ( M + 1 j , g + 1 ) .
H 2 ( g ) = [ T + g 1 ] g j = 0 M g ( 1 ) M g j F j K E M g j { T , T + 1 . . . T + g } ( 1 ) . [Theorem 2.3(3)] and (1) ( 2 ) .
Using the same method to prove (3), (4), (5), (6). □
Theorem 2.5.
(1). F T ( N + M , N ) = S U M ( N , [ T , T + 1 . . . T + M 1 ] , [ 1 , 3 . . . 2 M 1 ] ) , E T ( N + M , N ) = S U M ( N , [ T , T . . . T ] , [ 1 , 3 . . . 2 M 1 ] ) . (2). ( x + T ) ( x + T + 1 ) . . . ( x + T + M 1 ) = k = 0 M F T ( M , k ) x k , ( x + T ) M = k = 0 M E T ( M + 1 , k + 1 ) [ x ] k .
(3) g = 0 M ( 1 ) g g ! E T ( M + 1 , g + 1 ) = ( T 1 ) M , g = 0 M g M T = [ T ] M .
(4). g M T = H 3 ( g , [ T , 1 . . . 1 ] , [ T . . . T + M 1 ] ) = T × H 3 ( g , [ 1 . . . 1 ] , [ T + 1 . . . T + M 1 ] ) .
Proof. (1) is obvious. S U M ( N , [ T , T . . . T ] , [ 1 , 2 . . . M ] ) = ( T + n ) M   = g = 0 M g ! E T ( M + 1 , g + 1 ) ( g n the latter half of (2). [Theorem 2.1] → (3). (4) is derived from the definition of H 3 ( g ) . □
Definition 2.7. 
E p q ( [ I 1 , I 2 . . . I M ] , C )
= λ 1 + λ 2 + . . . + λ q = p , λ i 0 1 λ 1 2 λ 2 . . . q λ q ( I 1 + λ 1 C ) ( I 2 + λ 1 C + λ 2 C ) . . . ( I q 1 + λ 1 C + λ 2 C + . . . + λ q 1 C ) .
From the calculation formula: H 3 ( g , [ 1 , 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = E M g 1 g + 1 ( [ 1 , 1 . . . 1 ] , 1 ) . From Worpitzky identity: N M = g = 0 M 1 g M ( M N + g , so H 3 ( g ) = g M . g M is Eulerian number, this is a new expression. It is the result of [1]. For example: 2 5 = λ 1 + λ 2 + λ 3 = 2 1 λ 1 2 λ 2 3 λ 3 ( 1 + λ 1 ) ( 1 + λ 1 + λ 2 ) = 66 .
Associated Stirling Numbers of the first kind S 1 , r ( n , k ) is defined as the number of permutations of a set of n elements having exactly k cycles, all length r . S 1 , r ( n , k ) = n ! k ! i 1 + . . . + i k = n , i j r 1 i 1 . . . i k . S 1 , r ( n + 1 , k ) = n S 1 , r ( n , k ) + ( n ) r 1 S 1 , r ( n r + 1 , k 1 ) , n k r . From the recurrence relation, H 1 ( g , [ 2 , 3 . . M ] , [ 3 , 5 . . . 2 M 1 ] ) = S 1 , 2 ( M + g + 1 , g + 1 ) , H 2 ( g , [ 1 , 1 . . 1 ] , [ 3 , 5 . . . 2 M 1 ] ) = ( 1 ) M 1 g S 1 , 2 ( M + g + 1 , g + 1 ) .
Associated Stirling Numbers of the second kind S 2 , r ( n , k ) is defined as the number of permutations of a set of n elements having exactly k blocks, all length r . S 2 , r ( n , k ) = n ! k ! i 1 + . . . + i k = n , i j r 1 i 1 ! . . . i k ! . S 2 , r ( n + 1 , k ) = k S 2 , r ( n , k ) + ( r 1 n S 2 , r ( n r + 1 , k 1 ) , n k r . From the recurrence relation, H 1 ( g , [ 1 , 1 . . 1 ] , [ 3 , 5 . . . 2 M 1 ] ) = S 2 , 2 ( M + g + 1 , g + 1 ) , H 2 ( g , [ 2 , 3 . . M ] , [ 3 , 5 . . . 2 M 1 ] ) = ( 1 ) M 1 g S 2 , 2 ( M + g + 1 , g + 1 ) .
Definition 2.8. 
I 1 = 1 , I i + 1 I i = 1 or 2, I i + 1 I i = 2 is defined as continuity, I i + 1 I i = 2 is defined as discontinuity.
MIN g ( M ) = I 1 × I 2 × I 3 . . . × I M , Number of discontinuities=g.
It is easily understood by adding g holes in consecutive numbers. Easy to know: M I N g ( M ) = ( M + g ) ! i 1 i 2 . . . i g , 2 i 1 < i 2 < . . . < i g M + g 1 , i j + 1 i j 2 . This is the conclusion of [2]. From the calculation formula: H 1 ( g , [ 2 , 3 . . . M ] , [ 3 , 5 . . . 2 M 1 ] ) = M I N g ( M ) . So MIN g ( M ) = S 1 , 2 ( M + g + 1 , g + 1 ) .
From the definition of H(g):
Theorem 2.6. 
λ 1 + . . . + λ g + 1 = M g , λ i 0 , g M T = T 1 λ 1 2 λ 2 . . . ( g + 1 ) λ g + 1 ( T + λ 1 ) ( T + λ 1 + λ 2 ) . . . ( T + λ 1 + . . . + λ g ) .
P S = [ T , T . . . T ] , P T = [ 1 , 3 . . . 2 M 1 ] .
H 1 ( g ) = T λ 1 ( T + 1 ) λ 2 . . . ( T + g ) λ g + 1 ( 1 + λ 1 ) ( 3 + λ 1 + λ 2 ) . . . ( 2 g 1 + λ 1 + . . . + λ g ) .
H 2 ( g ) =Changed M I N g 1 ( M ) + M I N g ( M ) . Select X i K from M factors, change i to (T-i).
P S = [ T , T + 1 . . . T + M 1 ] , P T = [ 1 , 3 . . . 2 M 1 ] .
H 1 ( g ) =Changed M I N g 1 ( M ) + M I N g ( M ) . Select X i K from M factors, change i to (T+i-1).
H 2 ( g ) = ( T 1 ) λ 1 ( T 2 ) λ 2 . . . ( T g 1 ) λ g + 1 ( 1 + λ 1 ) ( 3 + λ 1 + λ 2 ) . . . ( 2 g 1 + λ 1 + . . . + λ g ) .
For example, express the product in terms of ():
MIN 0 ( 3 ) + MIN 1 ( 3 ) = ( 123 ) + ( 124 ) + ( 134 ) , H 2 ( 1 ) = ( T 1 , T 2 , 3 ) + ( T 1 , 2 , T 4 ) + ( 1 , T 3 , T 4 ) .
MIN 1 ( 3 ) + MIN 2 ( 3 ) = ( 124 ) + ( 134 ) + ( 135 ) , H 1 ( 2 ) = ( T , 2 , 4 ) + ( 1 , T + 2 , 3 ) + ( 1 , 3 , T + 4 ) .
From the definition of nested sum, there exists classification principles:
Theorem 2.7. 
S U M ( N ) = S U M ( N , P S , [ . . . T i , T i + 1 1 . . . T M 1 ] ) + S U M ( N 1 , [ . . . K i : D i , K i + 1 + D i + 1 : D i + 1 . . . K M + D M : D M ] , P T ) .
Table 1. Table of H(g)
Table 1. Table of H(g)
PS PT H 1 ( g ) H 2 ( g ) H 3 ( g )
[ 1 , 1 . . . 1 ] [ 1 , 2 . . . M ] g ! E M g g + 1 = g ! S 2 ( M + 1 , g + 1 ) ( 1 ) M g g ! S 2 ( M , g ) g M
[ 1 , 1 . . . 1 ] [ 2 , 3 . . . M ] ( g + 1 ) ! S 2 ( M , g + 1 ) ( 1 ) M 1 g ( g + 1 ) ! S 2 ( M , g + 1 ) g M
[ 1 , 1 . . . 1 ] [ 1 , 3 . . . 2 M 1 ] E M g g + 1 ( P T , 1 ) ( 1 ) M g M I N g 1 ( M ) E M g g + 1 ( [ 0 , 1 . . . ] , 2 )
[ 1 , 1 . . . 1 ] [ 3 , 5 . . . 2 M 1 ] S 2 , 2 ( M + 1 + g , g + 1 ) ( 1 ) M 1 g M I N g ( M ) E M 1 g g + 1 ( [ 2 , 3 . . . ] , 2 )
[ 1 , 2 . . . M ] [ 1 , 3 . . . 2 M 1 ] M I N g 1 ( M ) + M I N g ( M ) 1 × ( 1 ) M g E M g g ( [ 3 , 5 . . . ] , 1 ) 1 × E g M g ( [ 2 , 3 . . . ] , 2 )
[ 2 , 3 . . . M ] [ 3 , 5 . . . 2 M 1 ] M I N g ( M ) ( 1 ) M 1 g S 2 , 2 ( M + 1 + g , g + 1 ) E g M g ( [ 2 , 3 . . . ] , 2 )

3. Number Analysis

From the relations between H(g) [Theorem 2.1], it’s easy to get.:
g = 0 M g M = M ! , g = 1 M ( 1 ) M g g ! S 2 ( M , g ) = 1 . g = 1 M ( 1 ) M g S 1 , 2 ( M + g , g ) = 1 , g = 1 M ( 1 ) M g S 2 , 2 ( M + g , g ) = M ! .
g ! S 2 ( M , g ) = k = g M ( 1 ) M k k ! S 2 ( M , k ) ( g 1 k 1 = k = 0 g 1 k M ( M g M 1 k , 1 g M .
From H ( g , K ) , H ( g , T ) [Theorem 2.3], it’s easy to get:
Theorem 3.1.
(1). M ! ( g M = g ! i = 0 M g S 1 ( M + 1 , g + 1 + i ) S 2 ( g + i , g ) = ( M g ) ! i = 0 g S 1 ( M + 1 , M + 1 i ) S 2 ( M i , M g ) .
(2). S 2 ( M + 1 , g + 1 ) = i = 0 M g S 2 ( M i , g ) ( i M .
(3). g ! ( g M = i = 0 g S 1 ( M + 1 , M + 1 g + i ) S 2 ( M g + i , M g ) ( 1 ) i .
(4). i = g + 1 M ( K + i 1 ) ( g M = F M g K E 0 g + . . . + F 0 K E M g g , K = { K , K + 1 . . . K + M 1 } .
(5). i = 1 g ( T + i 1 ) ( g M = F g T E 0 M g + . . . + ( 1 ) g F 0 T E g M g , T = { T , T + 1 . . . T + M 1 } .
Proof. 
P S = P T = [ 1 , 2 . . . M ] , H 1 ( g ) = M ! ( g M ( 1 ) .
P S = [ 1 , 1 . . . 1 ] , P T = [ 1 , 2 . . . M ] , F i { 1 , 1 . . . 1 } = ( i M ( 2 ) .
P S = [ M , M 1 . . . 1 ] , P T = [ 1 , 2 . . . M ] , H 1 ( g ) = M ! ( g M ( 3 ) .
P S = [ K , K + 1 . . . K + M 1 ] , P T = [ T , T + 1 . . . T + M 1 ] ( 4 ) , ( 5 ) . □
Theorem 3.2. 
S U M ( N , [ 1 , 1 . . 1 , P S ] , [ 1 , 1 . . 1 , P T ] ) = S U M ( N ) . Number of 1 added=X,
T M M X 0 , S U M ( N , [ 1 , 1 . . . 1 , P S ] , [ 1 , 1 . . . 1 , P T ] ) expands g = 0 M ( . . . ) to g = 0 M + X ( . . . ) .
Any g = 0 M a g ( Y + g X can be converted to a M M ! q S U M ( N + p , [ K 1 , K 2 . . . K M ] , [ 1 , 2 . . . M ] ) , relations between H(g) [Theorem 2.1] provides necessary and sufficient conditions for:
Theorem 3.3. 
f ( g ) is an integral polynomial of degree equals X, 0 X < K .
g = 0 M a g ( Y + n X = n = 0 M K ( . . . ) ( Y + K + n X + K g = 0 M ( 1 ) x a g f ( g ) = 0 .
Proof. 
The condition is H 2 ( g ) = H 3 ( M g ) = 0 , 0 g < K . □
Define ( M + 1 ) × ( M + 1 ) matrix, A 1 , 2 , 3 ( P , Q , M ) =
( Q P ( Q M P ( Q + M P + M ( Q P + M , ( Q P ( Q P + M ( Q + M P + M ( Q + M P + 2 M , ( Q P + M ( Q M P ( Q + M P + 2 M ( Q P + M
.
P = N + T M M , Q = N 1 , List SUM(N)...SUM(N+M) from top to bottom, g increases from left to right, they correspond to F o r m 1 , 2 , 3 . It is easy to prove by Gaussian elimination:
Theorem 3.4. 
A 1 ( P , Q , M ) = A 2 ( P , Q , M ) = A 3 ( P , Q , M ) , A ( P , Q , M ) = A ( P , P Q , M ) .
A ( P , 0 , M ) = 1 , A ( P , 1 , M ) = ( 1 + M P + M , A ( P , Q > 1 , M ) = g = 0 Q 1 ( 1 + M P + M g ( 1 + M 1 + M g .
If S U M ( N ) or S U M ( N ) is easy to obtained, consider H(g) as variables, use Cramer’s law:
Theorem 3.5.
(1). H 1 ( g ) = k = 1 g + 1 ( 1 ) g + 1 + k ( T M M + k T M M + 1 + g S U M ( k ) = k = 1 g + 1 ( 1 ) g + 1 + k ( T M M + k 1 T M M + g S U M ( k ) .
(2). z ( k ) = i = 1 k ( 1 ) i + k ( i k S U M ( k ) , H 2 ( g ) = k = g + 1 M + 1 ( 1 ) g + k 1 ( g k 1 z ( k ) .
(3). H 3 ( g ) = k = 1 g + 1 ( 1 ) g + 1 + k ( g + 1 k 2 + T M S U M ( k ) = k = 1 g + 1 ( 1 ) g + 1 + k ( g + 1 k 1 + T M S U M ( k ) .
S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = N M , the following classical formula can be obtained.
(1) S 2 ( M , g ) = 1 g ! k = 0 g ( 1 ) g + k ( k g k M = 1 g ! k = 0 g ( 1 ) k ( k g ( g k ) M .
(3) g M = k = 1 g + 1 ( 1 ) 1 + g + k ( g + 1 k M + 1 k M = k = 0 g ( 1 ) k ( k M + 1 ( g + 1 k ) M .
T N , E T ( M + 1 , g + 1 ) = 1 g ! k = 0 g ( 1 ) g + k ( k g ( T + k ) M = k = 0 M g T k ( k M E M k g . The latter equation comes from [Theorem 2.3(1)].
T N , g M T = 1 ( T 1 ) ! k = 0 g ( 1 ) g + k ( g k T + M [ T + k ] T ( k + 1 ) M 1
= T × ( k = 0 M 2 g M 1 T + 1 k ( k M 1 + ( 1 ) g ( g M 1 ) , 0 < g < M 1 . The latter equation comes from [Theorem 2.4].
Theorem 3.6. 
g M T j = 1 ( T 1 ) ! k = 0 g ( 1 ) g + k ( g k T + M [ T + k ] T ( k + 1 ) M 1 j , T N .
Proof. 
From i = 1 M ( x + K i ) = j = 0 M F j K x M j , it’s easy to get: j = 0 M ( 1 ) j k M j F j M = 0 , M k 1 .
P S = [ 0 , 1 . . . ( M 1 ) ] , P T = [ T , T + 1 . . . T + M 1 ] , H 3 ( g < M ) = 0 j = 0 M 1 ( 1 ) j g M T j F j M 1 = 0 , 0 < g < M .
From these two equations it is clear that g M T j and g M T 0 = g 1 M T have the same thing:
g M T 0 = a 1 1 x + a 2 2 y + . . . , g M T j = a 1 1 x j + a 2 2 y j + . . . . Complete the proof from the expression of g 1 M T . □

4. Combinatorial Identities

Formal Calculation provides many ways to obtain an identity, and here are some of the methods.
Theorem 4.1. 
k r = 1 N . . . k j = 1 k j + 1 . . . k 2 = 1 k 3 k 1 = 1 k 2 S U M ( k j , P S , [ 1 , 2 . . . M ] ) = j r S U M ( N , P S , P T = [ T i = i + j 1 ] ) .
Proof. 
P S 1 = [ 1 : 0 , 1 : 0 . . . 1 : 0 , P S ] , P T 1 = [ 1 , 3 . . . 2 ( j 1 ) 1 , 1 + 2 ( j 1 ) , 2 + 2 ( j 1 ) . . . M + 2 ( j 1 ) ] .
It can be obtained: H 1 ( g > M , P S 1 , P T 1 ) = 0 , H 1 ( g M , P S 1 , P T 1 ) = H 1 ( g ) .
S U M ( N , P S 1 , P T 1 ) = g = 0 M H 1 ( g ) ( j + g N + j 1 = k j = 1 N S U M ( k j ) . . . k 2 = 1 k 3 k 1 = 1 k 2 1 . The remaining step is obvious. □
For example: k r = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 ( M k j = 1 M ! j r S U M ( N + 1 , [ 0 , 1 . . . ( M 1 ) ] , [ T i = i + j 1 ] ) .
H 1 ( g < M ) = 0 , H 1 ( M ) = ( M + j 1 ) ! ( j 1 ) ! 1 M ! j r ( M + j 1 ) ! ( j 1 ) ! ( j + 1 + ( M 1 ) ( N + 1 ) + ( j 1 ) = ( j 1 M + j 1 ( j + M ( j r ) N + j ( j r ) = ( j 1 M + j 1 ( M + r N + r . [3].
Theorem 4.2. 
g = 0 M ( g M ( A A + T + g ( Y + g X = g = 0 A ( g + T A + T ( M + T M + T + g ( Y + M A + g X + M A , A 0 , M A + 1 .
Proof. 
SUM(N,[T+1,T+2...T+M],[T+A+1,T+A+2...T+A+M])
= g = 0 M ( g M [ T + A + g ] g [ T + M ] M g ( T + A + 1 + g N + T + A = A ! ( T + M ) ! ( T + A ) ! g = 0 M ( g M ( A A + T + g ( T + A + 1 + g N + T + A (*)
= A ! ( T + M ) ! ( T + A ) ! S U M ( N , [ T + A + 1 . . . T + M , T + 1 , T + 2 . . . T + A ] , [ T + A + 1 . . T + M , T + M + 1 , T + M + 2 . . . T + M + A ] )
= ( T + M ) ! ( T + A ) ! S U M ( N , [ T + 1 , T + 2 . . . T + A ] , [ T + M + 1 , T + M + 2 . . . T + M + A ] ) = ( T + M ) ! ( T + A ) ! g = 0 A ( g A ( T + M + g ) ! ( T + M ) ! ( T + A ) ! ( T + g ) ! ( T + M + 1 + g N + T + M .
Compare with (*): g = 0 M ( g M ( A A + T + g ( T + A + 1 + g N + T + A = g = 0 A ( T + M + g ) ! ( T + M ) ! ( T + A ) ! ( T + g ) ! A ! ( A g ) ! g ! 1 A ! ( T + M + 1 + g N + T + M .
Y = T + A + 1 , X = N + A + T then proves completion. The two sides correspond to merging and unfolding. □
Theorem 4.3. 
SUM(N,[A,A+1...A+M-1]:2,[1,3...2M-1])= ( M M + N 1 [ A + M + N 2 ] M .
Proof. 
P S = [ A , A + 1 . . . A + M 1 ] .
Expand by definition : H 1 ( g , K ) = S U M ( g + 1 , [ A , A + 1 . . . A + M 1 g ] : 2 , [ 1 , 3 . . . 2 ( M g ) 1 ] ) .
Form [Theorem 2.2(5)], H 1 ( g , K ) = ( g M [ A + M 1 ] M g . Just compare the results. □
Special: S U M ( N , [ 1 , 2 . . . M ] : 2 , [ 1 , 3 . . . 2 M 1 ] ) = M ! ( M N + M 1 2 , 1 + 3 + . . . + ( 2 N 1 ) = N 2 .

5. Congruence

In this section, P is prime, K i , D i is any integer, ( P , D i ) = 1 .
The following congruences are based on P. D i D i 1 1 , K i + D i n D i ( K i D i 1 + n ) .
Definition 5.1. 
If K i D i 1 T i , 0 i X , define P T S = X , 0 P T S M .
Theorem 5.1. 
0 Y T M M + P T S ,
T M < P 1 , S U M ( P Y ) 0 ( mod P i = 1 P T S T i D i ) .
T M = P 1 , S U M ( P Y ) T i D i .
T M = P , S U M ( P Y ) H 1 ( M 1 ) H 2 ( M 1 ) . P T = [ 1 , 2 . . . P ] , S U M ( P ) D i K i D i 1 .
Proof. 
H = T M M , 0 H < T M P . 0 Y H .
S U M ( P ) = H 1 ( M ) ( T M + 1 P + H + . . . + H 1 ( 0 ) ( H + 1 P + H = g = 0 M H 1 ( g ) ( g + 1 + H P + H .
T M < P 1 S U M ( P Y ) 0 . T M = P 1 S U M ( P Y ) H 1 ( M ) T i D i .
T M = P H 1 ( M ) 0 S U M ( P Y ) S U M ( P ) H 1 ( M 1 ) .
Prove the part of PTS through [Theorem 2.2(2)].
P T = [ 1 , 2 . . P ] , [Theorem 2.3](1) H 1 ( M 1 ) = ( P 1 ) ! D i ( F 1 { K i D i 1 } + E 1 P 1 ) = D i F 1 { K i D i 1 } D i K i D i 1 . □
Remove products 0 , it can derive many congruence equations. Wilson’s Theorem ( P 1 ) ! 1 is a special case.
Theorem 5.2.
(1). P > 3 , S 1 ( P + M Z , P Z ) S 2 ( P + M Z , P Z ) 0 , 0 Z M , 1 M P 2 .
(2). S 1 ( P , K ) S 2 ( P , K ) 0 , 2 K P 1 .
(3). S 1 ( N + P 1 , N ) A , S 2 ( N + P 1 , N ) A , A [ ( N 1 ) / P ] + 1 , N > 0 .
(4). S 1 ( N + P 2 , N ) S 2 ( N + P 2 , N ) { 0 , N ¬ 1 1 , N 1 , N > 0 .
(5). S 1 ( P 1 , N ) 1 , S 2 ( P 1 , K ) ( P 1 K ) ! , K ! S 2 ( P 1 , K ) ( 1 ) K + 1 , K > 0 .
(6). S 1 ( P 2 , P 2 N ) 2 N + 1 1 .
(7). P > 3 , S 1 ( P , 2 ) 0 ( mod P 2 ) .
Proof. 
P T = [ 3 , 5 . . . 2 M 1 ] , P S 1 = [ 2 , 3 . . . M ] , P S 2 = [ 1 , 1 . . . 1 ] ,
H 1 ( g , P S 1 , P T ) = S 1 , 2 ( M + 1 + g , g + 1 ) , H 1 ( g , P S 2 , P T ) = S 2 , 2 ( M + 1 + g , g + 1 ) .
If 2 M 1 P , S U M ( P ) = H 1 ( M 1 ) ( 2 M P + M + . . . H 1 ( P M 1 ) ( P P + M + . . . = g = 0 M 1 H 1 ( g ) ( g + 1 + M P + M .
If g P M 1 , in the express of S 1 , 2 ( n , g + 1 ) , S 2 , 2 ( n , g + 1 ) , n = M + g + 1 P , when the largest i j is encountered where the number of 2 is g. M + g + 1 2 g = M + 1 g , M a x ( i j ) = M + 1 ( P M 1 ) < P , so H 1 ( g ) 0 ( 1 ) , ( 2 ) .
M = P 1 , S U M ( N , P S 1 , P T ) , H 1 ( g > 0 ) 0 , S U M ( N ) ( P N + P 1 .
M = P 1 , S U M ( N , P S 2 , P T ) , H 1 ( g > 0 ) 0 , S U M ( N ) ( P N + P 1 .
M = P 2 , S U M ( N , P S 1 , P T ) , H 1 ( g > 0 ) 0 , S U M ( N ) ( P 1 N + P 2 .
M = P 2 , S U M ( N , P S 2 , P T ) , H 1 ( g > 0 ) 0 , S U M ( N ) ( P 1 N + P 2 ( 3 ) , ( 4 ) .
H 2 ( g , P S 1 , P T ) = ( 1 ) M 1 g S 2 , 2 ( M + 1 + g , g + 1 ) , H 2 ( g , P S 2 , P T ) = ( 1 ) M 1 g S 1 , 2 ( M + 1 + g , g + 1 ) .
S U M ( P M 1 ) = H 2 ( M 1 ) ( 2 M P + M 2 + . . . + H 2 ( P M 1 ) ( P . . . + . . . + H 2 ( 1 ) ( 2 + M P + H 2 ( 0 ) ( 1 + M P 1 .
H 2 ( g P M 1 ) 0 S U M ( P M 1 ) H 2 ( 0 ) ( 1 ) M + 1 .
H 2 ( 0 , P S 1 , P T ) = ( 1 ) M 1 , H 2 ( 0 , P S 2 , P T ) = ( 1 ) M 1 M ! ( 5 ) .
S 1 ( N , M ) = S 1 ( N 1 , M 1 ) + ( N 1 ) S 1 ( N 1 , M ) and S 1 ( P 1 , N ) 1 , induction shows that (6).
P > 3 , S U M ( 2 , [ 2 , 3 . . P 2 ] , [ 3 , 5 . . . 2 P 5 ] ) = H 1 ( 1 ) ( P P + H 1 ( 0 ) ( P 1 P = S 1 , 2 ( P , 2 ) + P ( P 2 ) ! .
H 1 ( 1 ) / P = ( P 1 ) ! ( 1 2 ( P 2 ) + 1 3 ( P 3 ) + . . . + 1 P 1 2 P + 1 2 ) 1 ( 2 2 3 2 . . . ( P 1 2 ) 2 ) 1 ( 7 ) .
This is Wolstenholme’s Theory: i = 1 P 1 ( P 1 ) ! i ( mod P 2 ) } . □
A Direct Proof of Wilson’s Theorem:
P S = P T = [ 1 , 2 . . . P 1 ] , S U M ( 2 ) = H 1 ( 1 ) ( 2 1 N 1 + H 1 ( 0 ) ( 1 1 N 1 = P ! / 1 0 .
S U M ( 2 ) = 1 ! ( F P 2 P 1 E 0 1 + . . . + F 0 P 1 E P 2 1 ) + ( P 1 ) ! 1 + ( P 1 ) !
PS = PT = [ 1 , 2 . . . P 2 ] , 2 K P 2 , SUM ( K + 1 ) = H 1 ( K ) ( K K + . . . + H 1 ( 0 ) ( 0 K 0 .
H 1 ( g ) = g ! ( F P 2 g P 2 E 0 g + . . . + F 0 P 2 E P 2 g g ) g ! ( E 0 g + . . . + E P 2 g g ) .
Let f ( g ) = g ! ( E 0 g + . . . + E P 2 g g ) , f ( 0 ) 1 . It can be proved by induction: f ( g ) ( 1 ) g ( g + 1 ) .
P S = [ P 2 . . . 2 , 1 ] . Use H 1 ( g , T ) , similar conclusions were reached.
Theorem 5.3. 
M = 0 P 2 S 2 ( M , K ) ( 1 ) K ( K + 1 ) ( K ! ) 1 . M = 0 P S 2 ( M , K ) ( 1 ) K K ( K ! ) 1 , 0 < K < P .
M = 0 P 2 ( 1 ) M K S 2 ( M , P 2 K ) ( 1 ) K ( K + 1 ) ! .
M = 0 P ( 1 ) M K S 2 ( M , P 2 K ) ( ( 1 ) K 1 ) ( K + 1 ) ! , 0 K < P 2 .
Theorem 5.4.
(1). 0 < K i , K j < P , K i K j K 1 C 1 K 2 C 2 . . . K q C q 0 , 1 C i P 2 , C i > 0 .
(2). 0 K i + 1 K i 1 , K i = 1 C 1 2 C 2 . . q C q , C i P 2 , C i > 0 ; T i + 1 T i = K i + 1 K i + 1 , H = T M M ,
S U M ( P 1 H , [ K 1 = 1 , K 2 . . . K M ] , [ T 1 = 1 , T 2 . . . T M ] ) 0 . For { C i } , sum over all PTs meet the condition.
(3). In (1) and (2), C i = P 2 , P > 3 then 0 ( mod P 2 ) .
Proof. 
Obviously, q = 1 holds for (1).
q = 2 , If K 1 + K 2 p , K 1 C 1 ( P K 2 ) C 2 in the summation term; If K 1 + K 2 = p , K 1 C 1 ( P K 2 ) C 2 = K 1 C 1 + C 2 .
K 1 C 1 + C 2 0 , K 1 C 1 K 2 C 2 = y P K 1 C 1 K 1 C 1 + C 2 , y ( N ) q = 2 holds. Prove by induction that (1) holds.
Removing the repeated products, it still holds due to symmetry. That’s (2). It can be proven that: n P 2 0 ( mod P 2 ) , P > 3 , applying the same method → (3), they’re generalization of Wolstenholme’s Theory. □
Special: E M P = S 2 ( P + M , P ) , E M P 1 = S 2 ( P + M 1 , P 1 ) 0 , 1 M P 2 . E P 2 P , E P 2 P 1 0 ( mod P 2 ) .
Form classification [Theorem 2.7], H = T M M , S U M ( P 1 , [ 1 , 1 . . . 1 ] , [ 1 , 3 . . . 2 M 1 ] )   = X = 0 M 1 H = X S U M ( P 1 X , . . . ) .
We can get H = X S U M ( P 1 X , . . . ) 0 . For Example: P = 7 , M = P 2 ,
SUM ( 6 , [ 1 , 1 , 1 , 1 , 1 ] , [ 1 , 2 , 3 , 4 , 5 ] ) = n = 1 6 n 5 ,
SUM ( 5 , [ 1 , 1 , 1 , 1 , 2 ] , [ 1 , 2 , 3 , 4 , 6 ] ) + SUM ( 5 , [ 1 , 1 , 1 , 2 , 2 ] , [ 1 , 2 , 3 , 5 , 6 ] )
+ SUM ( 5 , [ 1 , 1 , 2 , 2 , 2 ] , [ 1 , 2 , 4 , 5 , 6 ] ) + SUM ( 5 , [ 1 , 2 , 2 , 2 , 2 ] , [ 1 , 3 , 4 , 5 , 6 ] ) ,
SUM ( 4 , [ 1 , 1 , 1 , 2 , 3 ] , [ 1 , 2 , 3 , 5 , 7 ] ) + SUM ( 4 , [ 1 , 1 , 2 , 2 , 3 ] , [ 1 , 2 , 4 , 5 , 7 ] )
+ SUM ( 4 , [ 1 , 2 , 2 , 2 , 3 ] , [ 1 , 3 , 4 , 5 , 7 ] ) + SUM ( 4 , [ 1 , 2 , 3 , 3 , 3 ] , [ 1 , 3 , 5 , 6 , 7 ] )
+ SUM ( 4 , [ 1 , 2 , 2 , 3 , 3 ] , [ 1 , 3 , 4 , 6 , 7 ] ) + SUM ( 4 , [ 1 , 1 , 2 , 3 , 3 ] , [ 1 , 2 , 4 , 6 , 7 ] ) ,
SUM ( 3 , [ 1 , 1 , 2 , 3 , 4 ] , [ 1 , 2 , 4 , 6 , 8 ] ) + SUM ( 3 , [ 1 , 2 , 2 , 3 , 4 ] , [ 1 , 3 , 4 , 6 , 8 ] )
+ SUM ( 3 , [ 1 , 2 , 3 , 3 , 4 ] , [ 1 , 3 , 5 , 6 , 8 ] ) + SUM ( 3 , [ 1 , 2 , 3 , 4 , 4 ] , [ 1 , 3 , 5 , 7 , 8 ] ) ,
SUM ( 2 , [ 1 , 2 , 3 , 4 , 5 ] , [ 1 , 3 , 5 , 7 , 9 ] ) = i = 1 P 1 ( P 1 ) ! i . All of them 0 ( mod P 2 )
In fact, S U M ( 5 , [ 1 , 1 , 1 , 1 , 2 ] , [ 1 , 2 , 3 , 4 , 6 ] ) + S U M ( 5 , [ 1 , 2 , 2 , 2 , 2 ] , [ 1 , 3 , 4 , 5 , 6 ] ) 0 ( mod P 2 ) . (*)

6. Generalization of Eulerian polynomials

In this section, q 0 , q 1 . By induction it can be shown that:
n = 0 N 1 q n ( M n + A = q N k = 0 M ( 1 ) k ( M k N + A 1 k ( q 1 ) k + 1 + q M A ( 1 q ) M + 1 , 0 A M .
X = T M M p 0 , 0 Y 1 , n = 0 N 1 q n p S U M ( n + Y ) = g = 0 M H 1 ( g ) n = 0 N 1 q n ( 1 + X + g n + Y + X
= g = 0 M H 1 ( g ) ( q N k = 0 X + 1 + g ( 1 ) k ( 1 + X + g k N + X + Y 1 k ( q 1 ) k + 1 + q 1 + g Y ( 1 q ) X + 2 + g ) .
From [Theorem 2.1 (5)], g = 0 M H 1 ( g ) q g ( 1 q ) M g = g = 0 M H 2 ( g ) ( 1 q ) M g = g = 0 M H 3 ( g ) q g . Define it as A q ( PS , PT ) .
n = 0 N 1 q n p S U M ( n + Y ) = q N g = 0 M H 1 ( g ) k = 0 X + 1 + g ( 1 ) k ( q 1 ) k + 1 ( 1 + X + g k N + X + Y 1 k + A q ( P S , P T ) q 1 Y ( 1 q ) T M + 2 p .
= q N k = 0 M ( 1 ) k ( q 1 ) k + 1 g = 0 M H 1 ( g ) ( 1 + X + g k N + X + Y 1 k + A q ( P S , P T ) q 1 Y ( 1 q ) T M + 2 p .
Theorem 6.1. 
T M M p 0 , 0 Y 1 ,
n = 0 N 1 q n p S U M ( n + Y ) = q N k = 0 M ( 1 ) k ( q 1 ) k + 1 p + k S U M ( N + Y 1 ) + A q ( P S , P T ) q 1 Y ( 1 q ) T M + 2 p .
| q | < 1 , n = 0 q n p S U M ( n + Y ) = A q ( P S , P T ) q 1 Y ( 1 q ) T M + 2 p .
Special: P S = [ 1 , 1 . . . 1 ] , P T = [ 1 , 2 . . . M ] , define A q ( PS , PT ) = A q ( M ) , A q ( M ) is Eulerian polynomial.
n = 0 N 1 q n n M = q N k = 0 M ( 1 ) k ( q 1 ) k + 1 1 + k S U M ( N 1 ) + A q ( M ) q ( 1 q ) M + 1
= q N ( q 1 ) M + 1 k = 0 M ( 1 ) k ( q 1 ) M k 1 + k S U M ( N 1 ) + A q ( M ) q ( 1 q ) M + 1 = ( * * ) + A q ( M ) q ( 1 q ) M + 1 .
1 + k S U M ( N 1 ) = k ( N 1 ) M = j = 0 k ( 1 ) j ( j k ( N 1 j ) M
= j = 0 k ( 1 ) j ( j k g = 0 M ( g M N g ( j + 1 ) M g ( 1 ) M g
= g = 0 M ( 1 ) M g k ( g M N g j = 0 k ( 1 ) j + k ( j k ( j + 1 ) M g .
We know: S 2 ( M + 1 , k + 1 ) = 1 ( k + 1 ) ! j = 0 k + 1 ( 1 ) j + k + 1 ( j k + 1 j M + 1 = 1 k ! j = 0 k ( 1 ) j + k ( j k ( j + 1 ) M .
1 + k S U M ( n ) = g = 0 M ( 1 ) M g k ( g M N g S 2 ( M g + 1 , k + 1 ) k ! .
( * * ) = q N ( q 1 ) M + 1 k = 0 M ( 1 ) k ( q 1 ) M k g = 0 M ( 1 ) M g k ( g M N g S 2 ( M g + 1 , k + 1 ) k ! .
= q N ( q 1 ) M + 1 g = 0 M ( 1 ) M g N g ( q 1 ) g ( g M k = 0 M ( q 1 ) M k g S 2 ( M g + 1 , k + 1 ) k !
N = 0 , n = 0 N 1 q n n M = 0 k = 0 M ( 1 ) M ( q 1 ) M k S 2 ( M + 1 , k + 1 ) k ! = A q ( M ) q ( 1 ) M 1 .
q A q ( M ) = k = 0 M ( q 1 ) M k S 2 ( M + 1 , k + 1 ) k ! , q A q ( M g ) = k = 0 M g ( q 1 ) M g k S 2 ( M g + 1 , k + 1 ) k ! .
Theorem 6.2. 
A q ( M ) = q 1 k = 0 M ( q 1 ) M k S 2 ( M + 1 , k + 1 ) k ! . Together with A q ( P S , P T ) , there are four expressions.
n = 0 N 1 q n n M = q N + 1 ( q 1 ) M + 1 g = 0 M ( 1 ) M g N g ( q 1 ) g ( g M A q ( M g ) + A q ( M ) q ( 1 q ) M + 1 .

References

  1. QI Deng-Ji. A New Explicit Expression for the Eulerian Numbers, Journal of Qingdao University of Science and Technology: Natural Science Edition. 04 (2012) 33.
  2. QI Deng-Ji. Associated Stirling number of the first kind, Journal of Qingdao University of Science and Technology: Natural Science Edition. 05 (2015) 36.
  3. Butler.S, P. Butler.S, P. Karasik, A note on nested sums, Journal of Integer Sequences. 04 (2010) 13.
  4. R. Graham, D. R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics, 2nd edition, AddisonWesley. (1994).
  5. V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag. (2002).
  6. D. Foata, Eulerian polynomials: from Euler’s time to the present, in the Legacy of Alladi Ramakrishnan in the Mathematical Sciences, Springer, New York, NY, USA. (2010) 253-273.
  7. L. Euler, Methodus universalis series summandi ulterius promota, in Commentarii academia scientiarum imperialis Petropolitana 8, Academiae scientiarum imperialis Petropolitanae. (1736) 147-158.
  8. H. W. Gould, Harris Kwong, Jocelyn Quaintance, Combinatorial IdentitesOn Certain Sums of Stirling Numbers with Binomial Coefficients, Journal of Integer Sequences. 18 (2015).
  9. Alfred Wünsche, Generalized Eulerian Numbers, Advances in Pure Mathematics. 08, (2018) 335-361. [CrossRef]
  10. H. Tsao, Sums of powers and Eulerian numbers, The Mathematical Gazette, 95 , (2011) 347-349. 10.1017/s0025557200003247.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated