Preprint
Article

This version is not peer-reviewed.

Symmetry in Formal Calculation

Ji Peng  *

Submitted:

04 August 2024

Posted:

07 August 2024

You are already at the latest version

Abstract
Formal Calculation uses an auxiliary form to calculate various nested sums and provides results in three forms. It is also a powerful tool for analysis. This article studies the symmetry of the coefficients in Formal Calculation. Three types of extended numbers were introduced, and many formulas for symmetric functions were obtained.
Keywords: 
;  ;  ;  

1. Introduction

The notion of formal computation was introduced in [1].
Definition 1.
The definition of p is recursive. p Z ,
0 f ( n ) = f ( n ) , n = 0 N 1 1 f ( n + 1 ) = f ( N ) , n = 0 N 1 f ( n + 1 ) = 1 f ( N ) , 1 = .
Definition 2.
The definition of SUM ( N ) = SUM ( N , PS , PT ) is recursive. K i , D i C ; T i N .
SUM ( N , [ K 1 : D 1 ] , [ T 1 = 1 ] ) = n = 0 N 1 ( K 1 + nD 1 ) .
SUM ( N , [ K 1 : D 1 , K 2 : D 2 ] , [ T 1 , T 2 = T 1 + 2 p ] ) = n = 0 N 1 ( K 2 + nD 2 ) p SUM ( n + 1 , [ K 1 : D 1 ] , [ T 1 ] ) .
[ K 1 : D , K 2 : D . . . K M : D ] = [ K 1 , K 2 . . . K M ] : D , [ K 1 , K 2 . . . K M ] : 1 = [ K 1 , K 2 . . . K M ]
Use K to represent the set { K 1 . . . K M } , T to represent the set { T 1 . . . T M } .
Use the auxiliary form: ( K 1 + T 1 ) ( K 2 + T 2 ) . . . ( K M + T M ) = i = 1 M X i , X i = T i or K i .
Definition 3.
X ( T ) =Number of { X 1 , X 2 . . . X M } T .
Definition 4.
X T 1 =Number of { X 1 , X 2 . . . X i 1 } T , X K 1 =Number of { X 1 , X 2 . . . X i 1 } K .
Obviously: X T 1 + X K 1 = i 1 .
Use the auxiliary form and each X i cannot be exchanged, [1] draws conclusions:
SUM ( N , PS , PT ) =
Form 1 g = 0 M H 1 ( g )   N 1 g N + T M M = g = 0 M H 1 ( g )   T M M + 1 + g N + T M M , B i =   K i + X T 1 D i , X i = K i ( T i X K 1 ) D i , X i = T i ,
Form 2 g = 0 M H 2 ( g )   N 1 N + T M M + g = g = 0 M H 2 ( g )   T M M + 1 + g N + T M M + g , B i =   K i + ( X K 1 T i ) D i , X i = K i ( T i X K 1 ) D i , X i = T i ,
Form 3 g = 0 M H 3 ( g )   N 1 g N + T M g = g = 0 M H 3 ( g )   T M + 1 N + T M g , B i =   K i + X T 1 D i , X i = K i K i + ( T i X T 1 ) D i , X i = T i .
H i ( g ) = H i ( g , PS , PT ) = H i ( g , M ) , is defined as X ( T ) = g i = 1 M B i .
For example:
SUM ( N , PS , [ 1 , 2 , 3 . . . M ] ) = n = 0 N 1 i = 1 M ( K i + nD i ) .
SUM ( N , PS , [ 1 , 3 . . . 2 M 1 ] ) = n M = 0 N 1 ( K M + n M D M ) . . . n 2 = 0 n 3 ( K 2 + n 2 D 2 ) n 1 = 0 n 2 ( K 1 + n 1 D 1 ) .
SUM ( N , PS , [ 1 , 2 , 4 ] ) = n 3 = 0 N 1 ( K 3 + n 3 D 3 ) n = 0 n 3 ( K 1 + n D 1 ) ( K 2 + n D 2 ) .
SUM ( N , PS , [ 1 , 3 , 4 ] ) = n 3 = 0 N 1 ( K 3 + n 3 D 3 ) ( K 2 + n 3 D 2 ) n = 0 n 3 ( K 1 + nD 1 ) .
PS = [ K 1 : D 1 , K 2 : D 2 . . . K M : D M ] , PT = [ T 1 , T 2 . . . T M ] . There are recursive relationships:
  • H 1 ( g , M ) = ( A M + gD M ) H 1 ( g , M 1 ) + ( B M + ( g 1 ) D M ) H 1 ( g 1 , M 1 ) ,
    A M = K M , B M = D M ( T M ( ( i 1 ) ( g 1 ) ) ) ( g 1 ) D M = T M D M ( i 1 ) D M .
  • H 2 ( g , M ) = ( A M gD M ) H 2 ( g , M 1 ) + ( B M + ( g 1 ) D M ) H 2 ( g 1 , M 1 ) ,
    A M = K M + ( i 1 g T M ) D M + gD M = K M + ( i 1 T M ) D M , B M = T M D M ( i 1 ) D M .
  • H 3 ( g , M ) = ( A M + gD M ) H 3 ( g , M 1 ) + ( B M ( g 1 ) D M ) H 3 ( g 1 , M 1 ) ,
    A M = K M , B M = K M + ( T M ( g 1 ) ) D M + ( g 1 ) D M = K M + T M D M .
Consider the general two-dimensional second-order linear recursive equations:
R ( M , g ) = ( A M + gD M ) R ( M 1 , g ) + ( B M + ( g 1 ) E M ) R ( M 1 , g 1 ) .
It can also be calculated in a similar way to H ( g ) , which is easier to understand. H ( g ) itself requires | D i | = | E i | and can’t change the sign, so that three forms exist. Many conclusions have been drawn [1]:
1.
H 1 ( g ) = k = g M H 2 ( k )   g k = k = 0 g H 3 ( k )   M g M k .
2.
H 2 ( g ) = k = g M ( 1 ) k + g H 1 ( k )   g k . H 3 ( g ) = k = 0 g ( 1 ) k + g H 1 ( k )   M g M k .
3.
g = 0 M H 1 ( g ) q g ( 1 q ) M g = g = 0 M H 2 ( g ) ( 1 q ) M g = k = 0 M H 3 ( g ) q g
4.
g = 0 M H 1 ( g ) = g = 0 M H 2 ( g ) 2 g = g = 0 M H 3 ( g ) 2 M g
5.
g = 0 M H 1 ( g )   Y g X = g = 0 M H 2 ( g )   Y X + g = g = 0 M H 3 ( g )   Y g X + M g , Y N , X C .
6.
SUM ( N , [ L 1 , L 2 . . . L q , PS ] , [ L 1 , L 2 . . . L q , PT ] ) = i = 1 q L i × SUM ( N , PS , PT ) .
Recurrence relations → 1), inversion → 2). 1) → 3)4)5). 5) is the basis of SUM ( N ) .
6) show that T 1 can be great than 1. Regardless of the practical implications, we can make the definition domain of PT extend to C .
When D i 0 , K i + D i n = D i ( K i D i + 1 ) , so only the case D i = 1 needs to be dealt with. In this paper, if not specified, the default is D i = 1 . PS = [ K 1 , K 2 . . . K M ] , PT = [ T 1 , T 2 . . . T M ] .
Definition 5.
F g K = 1 λ 1 < λ 2 < . . . < λ g M K λ 1 K λ 2 . . . K λ g , F 0 K = 1 , F g N = F g { 1 , 2 . . . N } .
Definition 6.
E g K = 1 λ 1 λ 2 . . . λ g M K λ 1 K λ 2 . . . K λ g , E 0 K = 1 , E g N = E g { 1 , 2 . . . N } .
F M N + M 1 = S 1 ( N + M , N ) , S 1 is unsigned stirling number of the first kind.
E M N = S 2 ( N + M , N ) , S 2 is stirling number of the second kind.

2. Properties of H(g)

In the calculation of H ( g ) , X i = ( X i , X i T ) ( X i , X i K ) .
Definition 7.
H ( g , T ) = H ( g , T , PS , PT ) = X i T B i , H ( g , T ) = X i T B i .
Also define H ( g , K ) , H ( g , K ) .
Theorem 1.
1.
H 1 ( g , K ) = H 3 ( g , K ) = F M g K E 0 g + F M g 1 K E 1 g + . . . + F 0 K E M g g .
2.
H 1 ( g , T ) = H 2 ( g , T ) = F g T E 0 M g F g 1 T E 1 M g + . . . + ( 1 ) g F 0 T E g M g .
3.
H 2 ( g , K ) = ( 1 ) M g ( F M g S E 0 g + . . . + F 0 S E M g g ) , S = { T i K i i + 1 } .
4.
H 3 ( g , T ) = ( 1 ) g F g S E 0 M g + ( 1 ) g 1 F g 1 S E 1 M g . . . + F 0 S E g M g , S = { ( T i K i i + 1 ) } .
5.
H 1 ( g , K ) = i = 1 M g ( K i + λ 1 + λ i ) , 0 λ 1 λ 2 . . . λ M g g .
6.
H 1 ( g , T ) = i = 1 g ( T i + λ 1 λ i ) , 0 λ 1 λ 2 . . . λ g M g .
Proof. 
PS 1 = [ PS , K M + 1 ] , PT 1 = [ PT , T M + 1 ] . Using induction to prove 2).
H 1 ( g , T , PS 1 , PT 1 ) = H 1 ( g , T ) + H 1 ( g 1 , T ) ( T M + 1 ( M g + 1 ) ) .
F g x { PT 1 } in H 1 ( g , T , PS 1 , PT 1 ) has three sources.
= ( 1 ) x F g x T E x M g + ( 1 ) x F ( g 1 ) x T E x M ( g 1 ) T M + 1
+ ( 1 ) x 1 F ( g 1 ) ( x 1 ) T E x 1 M ( g 1 ) ( ( M g + 1 ) )
= ( 1 ) x F g x T ( E x M g + E x 1 M + 1 g ( M + 1 g ) ) + ( 1 ) x F g x 1 T E x M + 1 g T M + 1 (*)
= ( 1 ) x F g x T E x M + 1 g + ( 1 ) x F g x 1 T E x M + 1 g T M + 1 = ( 1 ) x E x M + 1 g F g x { PT 1 } .
E x M g + E x 1 M + 1 g ( M + 1 g )
= S 2 ( M g + x , M g ) + ( M + 1 g ) S 2 ( M g + x , M + 1 g )
= S 2 ( M g + x + 1 , M + 1 g ) = E x M + 1 g (*).
5) and 6) are definitions.
Theorem 2.
PS = [ K i : D i ] , D i 0 ,
H 1 ( g ) = ( 1 ) M g H 2 ( g , [ K i + T i ( i 1 ) : D i ] , PT ) = ( 1 ) g H 3 ( g , PS , [ K i D i T i + i 1 ] ) .
H 2 ( g ) = ( 1 ) M g H 1 ( g , [ K i + T i ( i 1 ) : D i ] , PT ) , H 3 ( g ) = ( 1 ) g H 1 ( g , PS , [ K i D i T i + i 1 ] ) .
H 2 ( g ) = ( 1 ) M H 3 ( g , [ T i : D i ] , [ K i D i T i + i 1 ] ) .
H 3 ( g ) = ( 1 ) M H 2 ( g , [ K i + T i ( i 1 ) : D i ] , [ K i D i ] ) .

3. Symmetric Expressions in H(g)

PT = [ T , T + 1 . . . T + M 1 ] . It can be inferred from the definition of SUM ( N ) that K i can exchange orders. H 1 ( g ) = [ T + g 1 ] g H 1 ( g , K ) . It is clearly a symmetric function of K , we also reached the same conclusion. H 2 ( g ) , H 3 ( g ) are also symmetric functions, and there’s no K i 2 factors.
Definition 8.
F T ( N + M , N ) = F M { T , T + 1 . . . T + N + M 1 } , E T ( N + M , N ) = E M { T , T + 1 . . . T + N 1 } .
Obviously:
  • F T ( 0 , 0 ) = E T ( 0 , 0 ) = 1 , F T ( 1 , 0 ) = E T ( 1 , 0 ) = 0 , F T ( 1 , 1 ) = E T ( 1 , 1 ) = 1 .
  • F 0 ( N + M , N ) = S 1 ( N + M , N ) , E 1 ( N + M , N ) = S 2 ( N + M , N ) .
  • F T ( M + 1 , g + 1 ) = F M g { T , T + 1 . . . T + M } = ( T + M ) F T ( M , g + 1 ) + F T ( M , g ) .
  • E T ( M + 1 , g + 1 ) = E M g { T , T + 1 . . . T + g } = ( T + g ) E T ( M , g + 1 ) + E T ( M , g ) .
  • F T ( N + M , N ) = SUM ( N , [ T , T + 1 . . . T + M 1 ] , [ 1 , 3 . . . 2 M 1 ] ) .
  • E T ( N + M , N ) = SUM ( N , [ T , T . . . T ] , [ 1 , 3 . . . 2 M 1 ] ) .
Theorem 3.
PT = [ T . . . T + M 1 ] , H 2 ( g , K ) = j = 0 M g ( 1 ) M g j F j K E M g j { T , T + 1 . . . T + g } .
Proof. 
H 2 ( 0 , 1 ) = K 1 T , H 2 ( 1 , 1 ) = T . It’s holds when M = 1 .
H 2 ( g , M ) = ( K M T g ) H 2 ( g , M 1 ) + ( T + g 1 ) H 2 ( g 1 , M 1 ) .
H 2 ( g ) is a symmetric function = j = 0 M A M g ( j ) F j K
A 1 0 ( 0 ) = T , A 1 1 ( 0 ) = T .
A M g ( 0 ) = ( T + g ) A M 1 g ( 0 ) + ( T + g 1 ) A M 1 g 1 ( 0 )
A M g ( 0 ) = ( 1 ) M g [ T + g 1 ] g E T ( M + 1 , g + 1 ) = ( 1 ) M g [ T + g 1 ] g E M g { T , T + 1 . . . T + g } .
The rest only need to consider terms that multiply with K M .
A M g ( j ) = A M 1 g ( j 1 ) = A M j g ( 0 ) = ( 1 ) M g j [ T + g 1 ] g E T ( M + 1 j , g + 1 ) .
H 2 ( g ) = [ T + g 1 ] g j = 0 M g ( 1 ) M g j F j K E M g j { T , T + 1 . . . T + g } .
H 2 ( g , T ) = [ T + g 1 ] g the conclusion. □
Definition 9.
  j n T = ( T 1 + n j )   j 1 n 1 T + ( j + 1 )   j n 1 T ,   0 1 T = T ,   1 1 T = 0 ,   j > n , j < 0 n T = 0 .
Obviously:   0 n 1 = T ,   n n T = 0 . n > 0 ,   j n 1 =   j n is Eulerian number.
Definition 10.
  g M T j = i = 0 j ( 1 ) i   g 1 i M j T   i j , 0 j < g , 0 < g < M .
Theorem 4.
PT = [ T , T + 1 . . . T + M 1 ] , H 3 ( 0 ) = i = 1 M K i , H 3 ( M ) = i = 1 M ( T K i ) ,
H 3 ( 0 < g < M ) = j = 0 M 1   g M T j F j K + ( 1 ) g   g M F M K .
Proof. 
The coefficient before F M K is obvious, so H 3 ( g ) can be written in that form.
H 3 ( 0 < g < M ) = j = 0 M 1 A M g ( j ) F j K + ( 1 ) g   g M F M K .
H 3 ( 0 , 1 ) = K 1 , H 3 ( 1 , 1 ) = T K 1 A 1 0 ( 0 ) = 0 , A 1 1 ( 0 ) = T .
H 3 ( g , M ) = ( K M + g ) H 3 ( g , M 1 ) + ( T + M g K M ) H 3 ( g 1 , M 1 )
A M g ( 0 ) = gA M 1 g ( 0 ) + ( T + M g ) A M 1 g 1 ( 0 ) A M g ( 0 ) =   g 1 M T .
A M g ( j ) = A M 1 g ( j 1 ) A M 1 g 1 ( j 1 ) A M g ( j ) =   g M T j .
Similarly, PS = [ K , K 1 . . . K M + 1 ] , then H ( g ) are symmetric functions of T .
Theorem 5.
PS = [ K . . . K M + 1 ] , H 3 ( g , T ) = j = 0 g ( 1 ) g j F j T E g j { K , K 1 . . . K M + g } .
Theorem 6.
PS = [ K , K 1 . . . K M + 1 ] , H 2 ( M ) = i = 1 M T i , H 2 ( 0 ) = i = 1 M ( K T i ) ,
H 2 ( 0 < g < M ) = j = 0 M 1   M g M K j F j T + ( 1 ) M g   g M F M T .
Proof. 
H 2 ( 0 < g < M ) = j = 0 M 1 A M g ( j ) F j T + ( 1 ) M g   g M F M T .
H 2 ( 0 , 1 ) = K T 1 , H 2 ( 1 , 1 ) = T 1 A 1 0 ( 0 ) = K , A 1 1 ( 0 ) = 0 .
H 2 ( g , M ) = ( K g T M ) H 2 ( g , M 1 ) + ( T M M + g ) H 2 ( g 1 , M 1 )
A M g ( 0 ) = ( K g ) A M 1 g ( 0 ) ( M g ) A M 1 g 1 ( 0 ) A M g ( 0 ) =   M g 1 M K .
A M g ( j ) = A M 1 g ( j 1 ) + A M 1 g 1 ( j 1 ) A M g ( j ) =   M g M K j .

4. Properties of Extended Numbers

Theorem 7.
( x + T ) ( x + T + 1 ) . . . ( x + T + M 1 ) = k = 0 M F T ( M , k ) x k .
( x + T ) M = k = 0 M E T ( M + 1 , k + 1 ) [ x ] k .
Proof. 
SUM ( N , [ T , T . . . T ] , [ 1 , 2 . . . M ] ) = ( T + n ) M = g = 0 M H 1 ( g )   g n
= g = 0 M g ! E M g { T , T + 1 . . . T + g }   g n = g = 0 M g ! E T ( M + 1 , g + 1 )   g n 2).
x M = k = 0 M S 2 ( M , k ) x k because E 0 ( M + 1 , k + 1 ) = S 2 ( M , k ) .
Theorem 8.
E T ( M + 1 , g + 1 )
= 1 g ! k = 0 g ( 1 ) g + k   k g ( T + k ) M = k = 0 M g T k   k M E M k g .
Proof. 
H 1 ( g , [ T , T . . . T ] , [ 1 , 2 . . . M ] ) = g ! E T ( M + 1 , g + 1 ) .
Based on Crammer’s law, H 1 ( g ) = k = 1 g + 1 ( 1 ) g + 1 + k   T M M + k 1 T M M + g SUM ( k ) . [1]
E T ( M + 1 , g + 1 ) = 1 g ! k = 1 g + 1 ( 1 ) g + 1 + k   k 1 g ( T + k 1 ) M 1), 2).
Theorem 9.
  j n 1 = ( 1 ) j 1   j n 1 .   j n 2 = ( 2 ) j 1 (   j n 2 + 2 n 1   j n 2 ) .
Proof. 
1) is to prove:   j n 1 = ( n j 2 )   j 1 n 2 + ( j + 1 )   j n 2 .
Right = ( n 1 )   j 1 n 2 + ( j + 1 )   j n 1 = j   j n 1 + ( j + 1 )   j n 1 = Left .
Prove 2) in a similar way.
By recurrence relation:
Theorem 10.
  g M T = H 3 ( g , [ T , 1 . . . 1 ] , [ T . . . T + M 1 ] ) = T × H 3 ( g , [ 1 . . . 1 ] , [ T + 1 . . . T + M 1 ] ) .
Theorem 11.
T N ,   g M T = 1 ( T 1 ) ! k = 0 g ( 1 ) g + k   g k T + M [ T + k ] T ( k + 1 ) M 1
= T × ( k = 0 M 2   g M 1 T + 1 k   k M 1 + ( 1 ) g   g M 1 ) , 0 < g < M 1 .
Proof. 
Based on Crammer’s law, H 3 ( g ) = n = 1 g + 1 ( 1 ) g + n + 1   g + 1 n T M + 1 SUM ( n ) . [1]
PS = [ 1 . . . 1 ] , PT = [ T + 1 . . . T + M 1 ] , PS 1 = [ 1 , 2 . . . T , 1 . . . 1 ] , PT 1 = [ 1 , 2 . . . T , T + 1 . . . T + M 1 ] .
  g M T = T × H 3 ( g ) = 1 ( T 1 ) ! H 3 ( g , PS 1 , PT 1 ) .
= 1 ( T 1 ) ! n = 1 g + 1 ( 1 ) g + n + 1   g + 1 n T + M [ T + n 1 ] T × n M 1 1), 2).
  1 M T = T ( T + 1 ) 2 M 1 T ( T + M ) .
Theorem 12.
g = 0 M ( 1 ) g g ! E T ( M + 1 , g + 1 ) = ( T 1 ) M . g = 0 M   g M T = [ T ] M .
Proof. 
H 2 ( 0 ) = ( T 1 ) M = k = 0 M ( 1 ) k H 1 ( k ) = k = 0 M ( 1 ) k k ! E M k { T . . . T + k } 1).
PS = [ 1 . . . 1 ] , PT = [ T + 1 . . . T + M 1 ] , T × H 1 ( M ) = T × k = 0 M H 3 ( k ) 2).
K 1 is a constant, K 1 K 2 . . . K M , K i + 1 K i = 1 or 2, there are M-1 intervals between factors. K i + 1 K i = 1 is defined as continuity, K i + 1 K i = 2 is defined as discontinuity.
Definition 11.
MIN g K ( M ) = K K 2 . . . K M , K = K 1 , MIN g 1 ( M ) = MIN g ( M ) , count of discontinuities=g.
Obviously, 0 g M 1 , MIN g K ( M ) have   g M 1 items.
PS = [ T + 1 , T + 2 . . . T + M 1 ] , PT = [ T + 2 , T + 4 . . . T + 2 M 2 ] , T × H 1 ( g ) = MIN g T ( M )
PS = [ T , T + 1 . . . T + M 1 ] , PT = [ T , T + 2 . . . T + 2 M 2 ] , H 1 ( g ) = MIN g T ( M ) + MIN g 1 T ( M )
By definition:
Theorem 13.
λ 1 + λ 2 + . . . + λ g + 1 = M g , λ i 0 ,
  g M T = T 1 λ 1 2 λ 2 . . . ( g + 1 ) λ g + 1 ( T + λ 1 ) ( T + λ 1 + λ 2 ) . . . ( T + λ 1 + . . . + λ g ) .
PS = [ T , T . . . T ] , PT = [ 1 , 3 . . . 2 M 1 ] .
H 1 ( g ) = T λ 1 ( T + 1 ) λ 2 . . . ( T + g ) λ g + 1 ( 1 + λ 1 ) ( 3 + λ 1 + λ 2 ) . . . ( 2 g 1 + λ 1 + . . . + λ g ) .
H 2 ( g ) =Changed MIN g 1 ( M ) + MIN g ( M ) . Select M-g from M factors, change i to (T-i).
PS = [ T , T + 1 . . . T + M 1 ] , PT = [ 1 , 3 . . . 2 M 1 ] .
H 1 ( g ) =Changed MIN g 1 ( M ) + MIN g ( M ) . Select M-g from M factors, change i to (T+i-1).
H 2 ( g ) = ( T 1 ) λ 1 ( T 2 ) λ 2 . . . ( T g 1 ) λ g + 1 ( 1 + λ 1 ) ( 3 + λ 1 + λ 2 ) . . . ( 2 g 1 + λ 1 + . . . + λ g ) .
For example, express the product in terms of ():
MIN 0 ( 3 ) + MIN 1 ( 3 ) = ( 123 ) + ( 124 ) + ( 134 ) ,
H 2 ( 1 ) = ( T 1 , T 2 , 3 ) + ( T 1 , 2 , T 4 ) + ( 1 , T 3 , T 4 ) .
MIN 1 ( 3 ) + MIN 2 ( 3 ) = ( 124 ) + ( 134 ) + ( 135 ) ,
H 1 ( 2 ) = ( T , 2 , 4 ) + ( 1 , T + 2 , 3 ) + ( 1 , 3 , T + 4 ) .

5. The Formulas for Symmetric Functions

If 1 + K i = K i + 1 and 1 + T i = T i + 1 , H 1 ( g ) =   g M i = 1 g T i i = g + 1 M K i . 1 → [1]:
j = 0 M g F j { K , K + 1 . . . K + M 1 } E M g j g = i = g + 1 M ( K + i 1 )   g M .
j = 0 g ( 1 ) j F g j { T , T + 1 . . . T + M 1 } E j M g = i = 1 g ( T + i 1 )   g M .
1 → H 2 ( g , K ) = ( 1 ) M g j = 0 M g F j { T K i } E M g j g , 3→
Theorem 14.
j = 0 M g F j { T K i } E M g j g = j = 0 M g ( 1 ) j F j K E M g j { T , T + 1 . . . T + g } .
K i = T S 2 ( M , g ) = j = 0 M g ( T ) j   j M E T ( M + 1 j , g + 1 ) .
K i = T = 1 S 2 ( M , g ) = j = 0 M g ( 1 ) j   j M S 2 ( M + 1 j , g + 1 ) .
K i = q j = 0 M g ( T + q ) j   j M S 2 ( M j , g ) = j = 0 M g q j   j M E T ( M + 1 j , g + 1 ) .
K i = q , T = 1 j = 0 M g ( 1 q ) j   j M S 2 ( M j , g ) = j = 0 M g ( q ) j   j M S 2 ( M + 1 j , g + 1 ) .
1 → PS = [ K . . . K M + 1 ] , H 3 ( g , T ) = j = 0 g F j { T i K } E g j M g , 5→
Theorem 15.
j = 0 M g F j { K i T } E M g j g = ( 1 ) M g j = 0 M g ( 1 ) j F j K E M g j { T , T 1 . . . T g } .
Compared to 14, this is a little different.
Theorem 16.
PS 1 = [ 0 , 1 . . . ( p 1 ) , K p + 1 . . . K M ] , PT 1 = [ L 1 , L 2 . . . L p , T p + 1 . . . T M ] ,
SUM ( N , PS 1 , PT 1 ) = L i × SUM ( N p , [ K p + 1 + p . . . K M + p ] , [ T p + 1 . . . T M ] ) .
j = 0 M g F j { 0 , 1 . . . ( p 1 ) , K p + 1 . . . K M } E M g j g = 0 , g < p .
j = 0 M g p F j { 0 . . . ( p 1 ) , K p + 1 . . . K M } E M g p j g + p = j = 0 M p g F j { K p + 1 + p . . . K M + p } E M p g j g , 0 g M p .
Proof. 
By the definition of H 1 ( g ) , there clearly is:
H 1 ( g + p , PS 1 , PT 1 ) = L i × H 1 ( g , [ K p + 1 + p . . . K M + p ] , [ T p + 1 . . . T M ] ) SUM ( N ) .
Let PT = [ 1 , 2 . . . M ] , 1→ the rest.
Special:
H 1 ( 0 , K , [ K i + p ] , PT ) i = 1 M ( p + K i ) = j = 0 M F j { 0 , 1 . . . ( p 1 ) , K 1 . . . K M } E M j p .
p M = j = 0 p 1 ( 1 ) j F j p 1 E M j p , p > 1 .
From i = 1 M ( x + K i ) = j = 0 M F j K x M j , it’s easy to get:
j = 0 M k M j F j M = i = 1 M ( k + i ) . j = 0 M ( 1 ) j k M j F j M = 0 , M k 1 .
The extension can be obtained with H 3 ( g ) .
PS = [ 0 , 1 . . . ( M 1 ) ] , PT = [ T , T + 1 . . . T + M 1 ] , H 3 ( g < M ) = 0 ,
PS 1 = PT 1 = [ T , T + 1 . . . T + M 1 ] , H 3 ( g > 0 ) = 0
Theorem 17.
j = 0 M 1 ( 1 ) j   g M T j F j M 1 = 0 , 0 < g < M .
j = 0 M 1   g M T j F j K + ( 1 ) g   g M F M K = 0 , 0 < g < M , K = { T , T + 1 . . . T + M 1 } .
  g M T j = 1 ( T 1 ) ! k = 0 g ( 1 ) g + k   g k T + M [ T + k ] T ( k + 1 ) M 1 j , T N .
Proof. 
Proof of the third equation. From j = 0 M ( 1 ) j k M j F j M = 0 and the first equation,
it can be seen that   g M T j and   g M T 0 =   g 1 M T have the same thing:
11   g M T 0 = a 1 1 x + a 2 2 y + . . .   g M T j = a 1 1 x j + a 2 2 y j + . . . the expression.
The same conclusion can be obtained by combining definition of   g M T j and 11.
PS = [ T , T + 1 . . . T + p 1 , K p + 1 . . . K M ] , PT = [ T , T + 1 . . . T + M 1 ] ,
H 3 ( g ) = i = 1 p ( T + i 1 ) H 3 ( g , [ K p + 1 . . . K M ] , [ T + p . . . T + M 1 ] )
Theorem 18.
K = { T , T + 1 . . . T + p 1 , K p + 1 . . . K M } , K 1 = { K p + 1 . . . K M } ,
j = 0 M 1   g M T j F j K + ( 1 ) g   g M F M K = 0 , M > g > M p .
j = 0 M 1   g M T j F j K + ( 1 ) g   g M F M K =
i = 1 p ( T + i 1 ) ( j = 0 M p 1   g M p T + p j F j K 1 + ( 1 ) g   g M p F M p K 1 ) , 0 < g < M p .
PS = [ K , K 1 . . K M + 1 ] , PT = [ 0 , 1 . . . M 1 ] , H 2 ( g > 0 ) = 0 ,
PS 1 = PT 1 = [ T , T + 1 . . . T + M 1 ] , H 2 ( g < M ) = 0
Theorem 19.
j = 0 M 1   M g M K j F j M 1 = 0 , 0 < g < M .
j = 0 M 1   M g M 1 M T j F j K + ( 1 ) M g   g M F M K = 0 , 0 < g < M , K = { T , T + 1 . . . T + M 1 } .
PS = [ K , K 1 . . . K M + 1 ] , PT = [ K , K 1 . . . K p + 1 , T p + 1 . . . T M ] ,
H 2 ( g + p ) = i = 1 p ( K i + 1 ) H 2 ( g , [ K p . . . K M + 1 ] , [ T p + 1 . . . T M ] )
Theorem 20.
T = { K , K 1 . . . K p + 1 , T p + 1 . . . T M } , T 1 = { T p + 1 . . . T M } ,
j = 0 M 1   M g M K j F j T + ( 1 ) M g   g M F M T = 0 , 0 < g < p .
j = 0 M 1   M p g M K j F j T + ( 1 ) M p g   g + p M F M T =
i = 1 p ( K i + 1 ) ( j = 0 M p 1   M p g M p p K j F j T 1 + ( 1 ) g   g M p F M p T 1 ) , 0 < g < M p .
Theorem 21.
T Z , p N , 0 g M , p M ,
j = 0 M g F j { T , T + 1 . . . T + p 1 , K p + 1 . . . K M } E M g j g =
i = 0 p   i p ( T + p + g i 1 ) p i j = 0 M p g + i F j { K p + 1 . . . K M } E M p g + i j g i .
Proof. 
PS 1 = [ T , T + 1 . . . T + ( p 1 ) , K p + 1 . . . K M ] , PT 1 = [ T , T + 1 . . . T + M 1 ] ,
PS 2 = [ K p + 1 . . . K M ] , PT 2 = [ T + p 1 . . . T + M 1 ] .
H 1 ( g , [ T , PS ] , [ T , PT ] ) = T × H 1 ( g ) + T × H 1 ( g 1 )
H 1 ( g , PS 1 , PT 1 ) = [ T + g 1 ] g H 1 ( g , K , PS 1 , PT 1 )
= [ T + p 1 ] p i = 0 p   i p H 1 ( g i , PS 2 , PT 2 ) .
= [ T + p 1 ] p i = 0 p   i p [ T + p 1 + g i ] g i H 1 ( g i , K , PS 2 , PT 2 ) .
K i = 0 , g = M p j = 0 p F j { T . . . T + p 1 } E p j M p = i = 0 p   i p [ T 1 + M i ] p i E i M p i .
g = 1 j = 0 M 1 F j { T . . . T + p 1 , K p + 1 . . . K M } = i = 0 p   i p [ T 1 + p i ] p i j = 0 M p 1 + i F j { K p + 1 . . . K M } .
p = M 1 j = 0 p F j { T , T + 1 . . . T + p 1 } = [ T + p ] p .

6. PT=PS and Its Promotion

H 1 ( g , PT , PT ) = i = 1 M T i   g M , promoting it:
Theorem 22.
PS = [ T 1 , T 2 . . . T M p , 0 , 1 . . . ( p 1 ) ] , then
H 1 ( g ) = i = 1 M T i   g p M p , H 2 ( g ) = ( 1 ) M g i = 1 M T i   M g p ,
H 3 ( p ) = i = 1 M T i , H 3 ( g p ) = 0 , SUM ( N ) = i = 1 M T i   T M + 1 N + T M p .
Proof. 
H 1 ( g , M ) = ( K M + g ) H 1 ( g , M 1 ) + ( T M M + g ) H 1 ( g 1 , M 1 )
Using induction and the recurrence relationship one can obtain H 1 ( g ) .
PT 1 = [ T M p + 1 . . . T M ] , 2→
H 2 ( g , [ 0 . . . ( p 1 ) ] , PT 1 ) = ( 1 ) M g H 1 ( g , PT 1 , PT 1 ) = ( 1 ) M g i = M p + 1 M T i   g P .
H 2 ( g ) = j = 1 M p T i × H 2 ( g ( M p ) , [ 0 . . . ( p 1 ) ] , PT 1 ) H 2 ( g ) .
H 3 ( g ) can be obtained from the definition. H 3 ( g ) SUM ( N ) .
Theorem 23.
PS = [ 0 , 1 . . . ( M p 1 ) , T M p + 1 ( M p ) . . . T M ( M p ) ] , then
H 2 ( g ) = ( 1 ) M g i = 1 M T i   g p M p , H 1 ( g ) = i = 1 M T i   M g p ,
H 3 ( M p ) = i = 1 M T i , H 3 ( g M p ) = 0 , SUM ( N ) = i = 1 M T i   T M + 1 N + T M M + p .
Proof. 
2 & 22 H 2 ( g ) .
p = 0 , H 1 ( M ) = i = 1 M T i . Recurrence relation & induction on p H 1 ( g ) .
H 3 ( g ) can be obtained from the definition. H 3 ( g ) SUM ( N ) .
Using similar methods:
Theorem 24.
PS = [ T 1 , T 2 . . . T M p , 0 , 1 . . . ( p 1 ) ] ,
PT = [ 0 , 1 . . . ( M p 1 ) , ( M p ) T M p + 1 . . . ( M p ) T M ] , then
H 3 ( g ) = ( 1 ) g i = 1 M T i   g p M p , H 1 ( p ) = ( 1 ) p i = 1 M T i , H 1 ( g p ) = 0 ,
H 2 ( g ) = ( 1 ) g i = 1 M T i   g M p ,
SUM ( N ) = ( 1 ) p i = 1 M T i   1 T M N T M p , p > 0 ; SUM ( N ) = i = 1 M T i , p = 0 .

7. Transformation of SUM(N)

i = 1 M ( x + K i ) = g = 0 M a g x M g = g = 0 M F g K x M g = SUM ( x + 1 , PS , [ 1 , 2 . . . M ] ) .
No need to know the value of K i . Any polynomial can be converted to SUM ( N , PS , [ 1 , 2 . . . ] ) .
By choosing c and K 1   , K 2   . . . appropriately, SUM ( N ) can be converted to c × q SUM ( N , [ K 1   , K 2   . . . ] , PT 1 ) . However, it is generally necessary to solve higher-order equations to solve for K   . But specifies that every nested sum can be flattened, converting to c × q SUM ( N , PS , [ 1 , 2 . . . ] ) .
( 1 ) = g = 0 M b g   g + X + 1 N + Y , ( 2 ) = g = 0 M c g   g + X + 1 N + Y + g , ( 3 ) = g = 0 M d g   M + 1 + X N + Y + M + X g , can be converted to c × X SUM ( N + Y X , PS , [ 1 , 2 . . . M ] ) . c = b M M ! = c M M ! = d M ( 1 K i ) . It is only necessary to solve the system of linear equations to find F j K . so them can also be converted to g = 0 M a g x M g .
Special:
b 0 = b 1 = . . . = b q = 0 K 1 = 0 , K 2 = 1 . . . K q = ( q 1 ) .
c 0 = c 1 = . . . = c q = 0 K 1 = 1 , K 2 = 2 . . . K q = q .
d 0 = d 1 = . . . = d q = 0 K 1 = 0 , K 2 = 1 . . . K q = ( q 1 ) .
( 1 ) , ( 2 ) , ( 3 ) can also be converted to c × SUM ( N + Y X , PS , [ X + 1 , X + 2 . . . X + M ] ) .
c = b M ( X + 1 ) . . . ( X + M ) = c M ( X + 1 ) . . . ( X + M ) = d M ( X + 1 K i ) .
Special: c 0 = c 1 = . . . = c q = 0 K 1 = X + 1 , K 2 = X + 2 . . . K q = X + q .

References

  1. Peng Ji. Formal calculation. https://www.preprints.org/manuscript/202305.0311/v3. 2023. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated