Submitted:
14 July 2023
Posted:
17 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Exploring Biomarkers for Predicting the Therapeutic Effects of TKIs (Table 1)
2.1. Sorafenib Biomarkers
2.2. Regorafenib Biomarker Studies
2.3. Signaling Pathways as Biomarkers for TKIs: Insights from Trials with mTOR and MET Inhibitors
2.4. New Approaches for Biomarker Discovery in Lenvatinib Treatment
| Therapeutics | Study design | Number of cases | Prognostic and predictive factors | Outcome | Statistical analysis | HR [95% CI] | P-value | Authors [reference no.] |
|---|---|---|---|---|---|---|---|---|
| Sorafenib | Retrospective, single-arm | 120 | [High serum Ang-2] | PFS | Univariate | 1.84 [1.21–2.81] | 0.004 | Miyahara K et al. [14] |
| OS | Multivariate | 1.83 [1.12–2.98] | 0.014 | |||||
| [High angiogenic group*] *: patients with > three serum cytokines (Ang-2, FST, G-CSF, HGF, Leptin, PDGF-BB, PECAM-1, or VEGF) |
PFS | Univariate | 1.98 [1.30–3.06] | 0.001 | ||||
| OS | Multivariate | 1.76 [1.07–2.94] | 0.023 | |||||
| [MVI (present)] | OS | Multivariate | 2.27 [1.36–3.72] | 0.001 | ||||
| Sorafenib | Retrospective pooled analysis of two phase 3 trials (vs. placebo) | Sorafenib 448 Placebo 379 |
[Without EHS] | OS | Multivariate | 0.55 [0.42–0.72] | 0.015 | Bruix J et al. [15] |
| [With HCV] | OS | Multivariate | 0.47 [0.32–0.69] | 0.035 | ||||
| [Low NLR] | OS | Multivariate | 0.59 [0.46–0.77] | 0.0497 | ||||
| Sorafenib | Subgroup meta-analyses, single-arm |
170 | [Low NLR] | OS | Univariate | 1.49 [1.17–1.91] | 0.001 | Qi X et al. [18] |
| Sorafenib | Observational registry, single-arm | 3,371 | [Child-Pugh A] | OS | Kaplan-Meier | - | N/A | Marrero JA et al. [19] |
| [Bilirubin] | OS | Univariate | 1.71 [1.57–1.86] | N/A | ||||
| [Albumin] | OS | Univariate | 1.76 [1.63–1.89] | N/A | ||||
| Sorafenib | Retrospective, single-arm, HCV patients only |
103 | [HCV eradication] | OS | Multivariate | 0.46 [0.26–0.78] | 0.004 | Kuwano A et al. [20] |
| [ALBI score] | OS | Multivariate | 2.29 [1.20–4.37] | 0.012 | ||||
| Sorafenib | Population-based retrospective cohort, HCV patients only, single-arm |
1,684 | [DAA user] | OS | Univariate PSM univariate |
- - |
< 0.0001 < 0.0001 |
Tsai H-Y et al. [21] |
| Sorafenib | Retrospective, single-arm | 55 | [FGF3/FGF4amplification] (frozen tumor tissue) |
CR/PR | Fisher's exact | - | 0.006 | Arao T et al. [26] |
| [multiple lung metastases] | CR/PR | Fisher's exact | - | 0.006 | ||||
| Sorafenib | Retrospective, single-arm | 20 | [High miR-224 expression] (FFPE tumor tissue) |
PFS | Univariate | 0.28 [0.09–0.92] | 0.029 | Gyöngyösi B et al. [28] |
| OS | Univariate | 0.24 [0.07–0.79] | 0.012 | |||||
| Sorafenib | Retrospective, single-arm | Training 26 Validation 58 |
[High miR-425-3p expression] (FFPE tumor tissue)] |
TTP | Multivariate | 0.4 [0.1–0.7] | 0.002 | Vaira V et al. [31] |
| PFS | Multivariate | 0.3 [0.1–0.7] | 0.0012 | |||||
| Sorafenib | Retrospective validation of the pharmacogenomics panel, single-arm |
54 | [High serum DKK-1] | PFS | Univariate | - | 0.0396 | Qiu Z et al. [33] |
| OS | Univariate | - | 0.0171 | |||||
| Regorafenib | Retrospective pooled analysis of the phase 3 trial (vs. placebo) | Protein cohort Regorafenib 332 Placebo 167 |
[Plasma ANG-1] (1 ng/mL increase) | OS | Multivariate | 1.12 [1.05–1.19] | 0.019 | Teufel M et al. [35] |
| TTP | Multivariate | 1.10 [1.04–1.17] | 0.017 | |||||
| [Low plasma Cystatin-B] (2-fold increase ) | OS | Multivariate | 1.46 [1.15–1.85] | 0.04 | ||||
| TTP | Multivariate | 1.42 [1.14–1.77] | 0.018 | |||||
| [Low plasma LAP TGF-β1] (2-fold increase) | OS | Multivariate | 1.36 [1.12–1.65] | 0.04 | ||||
| TTP | Multivariate | 1.41 [1.18–1.68] | 0.004 | |||||
| [Low plasma LOX-1] (1 ng/mL increase) | OS | Multivariate | 1.35 [1.16–1.57] | 0.009 | ||||
| TTP | Multivariate | 1.78 [1.33–2.39] | 0.003 | |||||
| [Low plasma MIP-1α] (1 pg/mL increase) | OS | Multivariate | 1.02 [1.01–1.04] | 0.04 | ||||
| TTP | Multivariate | 1.02 [1.00–1.03] | 0.043 | |||||
| miRNA cohort Regorafenib 234 Placebo 109 |
[miR-15b] | OS | Multivariate | 0.37 [0.20–0.70] | 0.002 | |||
| [miR-107] | OS | Multivariate | 0.54 [0.37–0.81] | 0.003 | ||||
| [miR-320b] | OS | Multivariate | 0.57 [0.41–0.81] | 0.001 | ||||
| [miR-122] | OS | Multivariate | 1.35 [1.14–1.60] | 0.0004 | ||||
| [miR-374b] | OS | Multivariate | 1.36 [1.11–1.65] | 0.002 | ||||
| [miR-200a] | OS | Multivariate | 1.39 [1.15–1.68] | 0.001 | ||||
| [miR-30a] | OS | Multivariate | 1.47 [1.14–1.88] | 0.003 | ||||
| [miR-125b] | OS | Multivariate | 1.54 [1.19–1.99] | 0.001 | ||||
| [miR-645]* (*dichotomized analysis, not vs. placebo) |
OS | Multivariate | 3.16 [1.52–6.55] | 0.002 | ||||
| Lenvatinib | Subgroup analysis of the open-label phase 3 trial (vs. sorafenib) |
Lenvatinib 478 (HBV 251, Alcohol 36) Sorafenib 476 (HBV 228, Alcohol 21) |
[HBV] | PFS | Univariate | 0.62 [0.50–0.75] | N/A | Kudo M et al. [8] |
| [Alcohol] | PFS | Univariate |
0.27 [0.11–0.66] | N/A | ||||
| Lenvatinib | Retrospective, single-arm | 237 | [NLR ≥ 4] | OS | Multivariate | 1.87 [1.10–3.12] | 0.021 | Tada T et al. [53] |
| PFS | Multivariate | 1.90 [1.27–2.84] | 0.002 | |||||
| DCR | Chi-square test? | 0.007 | ||||||
| [AFP ≥ 400 ng/mL] | OS | Multivariate | 1.97 [1.19–3.27] | 0.009 | ||||
| [mALBI grade 2b or 3] | OS | Multivariate | 2.12 [1.27–3.56] | 0.004 | ||||
| [BCLC stage ≥ C] | PFS | Multivariate | 1.52 [1.03–2.24] | 0.036 | ||||
| Lenvatinib | Retrospective, single-arm | 1,325 | [HBV] | OS | Multivariate | 1.56 [1.13–2.17] * | 0.0071* | Casadei-Gardini A et al. [54] *: data are from the model 1 of 3 multivariate analyses. |
| [NAFLD/NASH] | OS | Multivariate | 0.58 [0.33–0.98] * | 0.0044* | ||||
| PFS | Multivariate | 0.87 [0.75–0.93] | 0.0090 | |||||
| [BCLC stage C] | OS | Multivariate | 1.64 [1.19–2.27] * | 0.0027* | ||||
| PFS | Multivariate | 1.33 [1.14–1.55] | 0.0002 | |||||
| [NLR > 3] | OS | Multivariate | 1.95 [1.46–2.60] * | < 0.0001* | ||||
| PFS | Multivariate | 1.16 [1.01–1.36] | 0.0482 | |||||
| [AST > 38] | OS | Multivariate | 1.52 [1.08–2.13] * | 0.0167* | ||||
| PFS | Multivariate | 1.21 [1.01–1.45] | 0.0365 | |||||
| Lenvatinib |
Retrospective validation of the experimentally identified biomarker (vs. sorafenib) |
Lenvatinib 65 (ST6GAL1 high 22, low 43) Sorafenib 31 (ST6GAL1 high 12, low 19) |
[Serum ST6GAL1 high] | OS | Univariate | < 0.05 | Myojin Y et al. [55] |
3. AFP as a Predictive Biomarker for Ramucirumab Treatment
4. Exploration of Biomarkers for Predicting the Therapeutic Efficacy of Single-agent ICIs and Combined Immunotherapy (Table 2)
4.1. Known Predictive Markers for the Efficacy of Single-Agent ICI and Combined Immunotherapies for HCC: PD-L1 Expression, Tumor Mutation Burden (TMB), and Microsatellite Instability (MSI)
4.2. NASH as a Background Liver Disease
4.3. Wnt/β-Catenin Mutations as a Biomarker and MRI Findings as Imaging Biomarkers
4.4. Problems with Wnt/β-catenin mutations as a biomarker and MRI findings as imaging biomarkers
4.5. Blood Sample Biomarkers for Predicting the Therapeutic Effect of ICI Therapy: CRAFITY Score and NLR
4.6. Biomarkers Predicting the Therapeutic Effect of Atezolizumab and Bevacizumab Combination Therapy
| Therapeutics | Study design | Number of cases | Prognostic and predictive factors | Outcome | analysis | HR [95%CI] | P-value | Author (reference no) |
|---|---|---|---|---|---|---|---|---|
| Anti-PD-(L)1-based immunotherapy | Meta-analyses of 3 phase 3 trials: Checkmate 459 (Nivolumab vs Sorafenib), IMbrave 150 (Atezo/Beva vs Sorafenib), KEYNOTE-240 (Pembrolizumab vs Placebo) |
ICI 985 Nivolumab 371 Pembrolizumab 278 Atezo/Beva 336 Control 672 Sorafenib 372+165 Placebo 135 |
[HBV] | OS | univariate | 0.64 [0.49-0.83] | 0.0008 | Pfister D et. al. [75] |
| [HCV] | OS | univariate | 0.68 [0.48-0.97] | 0.04 | ||||
| Retrospective (ICI single arm) |
exploratory cohort 130 validation cohort 118 |
[NAFLD] | OS | multivariate | 2.6. [1.2-5.6] | 0.017 | ||
| Atezo/Beva Lenvatinib (Sorafenib) |
retrospective | Non-viral cohort Atezo/Beva 190 Lenvatinib 569 |
[Lenvatinib] | OS | multivariate | 0.65 [0.44-0.95] | 0.0268 | Rimini M et. al. [77] |
| PFS | multivariate | 0.67 [0.51-0.86] | 0.035 | |||||
| NAFLD/NASH cohort Atezo/Beva 82 Lenvatinib 254 |
[Lenvatinib] | OS | multivariate | 0.46 [0.26-0.84] | 0.011 | |||
| PFS | multivariate | 0.55 [0.38-0.82] | 0.031 | |||||
| Anti-PD-(L)1 monotherapy | retrospective, single arm |
18 | [hyperintensity tumor (RER* ≥ 0.9) on EOB-MRI] | PFS | multivariate | 7.78 [1.59–38.1] | 0.011 | Aoki T et. al. [82] |
| Atezo/Beva | retrospective validation based on multiomics study, single arm |
Non-viral HCC 30 | [Steatotic HCC] | PFS | univariate | <0.05 | Murai H et.al. [85] |
|
| Atezo/Beva Lenvatinib |
retrospective, separate single arm (not vs Lenvatinib) |
Atezo/Beva 35 | [hetorogenous tumor on EOB-MRI] | PFS | univariate | - | 0.007 | Sasaki R et.al. [86] |
| [hyperintensity tumor (RER‡ ≥ 0.9) on EOB-MRI] | PFS | univariate | - | 0.012 | ||||
| Lenvatinib 33 | (no significant factor) | - | ||||||
| Anti-PD-(L)1-based immunotherapy | retrospective, single arm |
24 | [20 gene inflamed signature] (CCL5, CD2, CD3D, CD48, CD52, CD53, CXCL9, CXCR4, FYB, GZMA, GZMB, GZMK, IGHG1, IGHG3, LAPTM5, LCP2, PTPRC, SLA, TRAC, TRBC2) |
PR | Wilcoxon rank-sum | - | 0.047 | Montironi C et.al. [91] |
| Anti-PD-(L)1-based immunotherapy Sorafenib |
retrospective, separate single arm (not vs Sorafenib) |
Anti-PD-(L)1-based immunotherapy: training cohort 190 (anti-PD-(L)1 mono 110, Atezo/Beva 75, Others 5) validation cohort 102 (anti-PD-(L)1 mono 68, Atezo/Beva 25, Anti-PD-(L)1 + TKI 7, Others 2) |
[Child-Pugh A] | OS | multivariate | 2.3 (1.5-3.4) | <0.001 | Scheiner B et.al. [93] |
| [ECOG PS 0] | OS | multivariate | 2.1 (1.4-3.2) | <0.001 | ||||
| [AFP<100] | OS | multivariate | 1.7 (1.2-2.6) | 0.007 | ||||
| [CRP<1] | OS | multivariate | 1.7 (1.2-2.6) | 0.007 | ||||
| [CRAFITY score†] | OS | univariate | - | 0.001 | ||||
| CRAFITY low | 1 | |||||||
| CRAFITY int. | 2.0 [1.1-3.4] | |||||||
| CRAFITY high | 3.6 [2.1-6.2] | |||||||
| [CRAFITY score†] | ORR | Chi square | - | 0.001 | ||||
| [CRAFITY score†] | DCR | Chi square | - | <0.001 | ||||
| [CRAFITY score†] | OS | univariate | - | 0.001 | ||||
| DCR | Chi square | - | 0.037 | |||||
| Sorafenib 204 | [CRAFITY score†] | OS | univariate | - | <0.001 | |||
| Ate/Bev | retrospective, single arm |
297 | [AFP<100] | PFS | multivariate | - | <0.001 | Hatanaka T et.al. [94] |
| OS | multivariate | - | 0.028 | |||||
| [CRP<1] | PFS | multivariate | - | <0.001 | ||||
| OS | multivariate | - | 0.032 | |||||
| [CRAFITY score†] | PFS | univariate | - | <0.001 | ||||
| OS | univariate | - | ||||||
| DCR | Chi square | - | 0.029 | |||||
| Ate/Bev | retrospective, single arm |
40 | [NLR > 3.21] | PFS | univariate | - | <0.0001 | Eso Y et.al [99] |
| Ate/Bev | retrospective, single arm |
249 | [NLR > 3] | OS | multivariate | 3.37 [1.02-11.08] | 0.001 | Tada T et.al. [100] |
| Atezo/Beva Sorafenib |
retrospective pooled analysis of the phase 1b GO30140 (single arm) and the phase 3 trial IMbrave 150 (Atezo/Beva vs Sorafenib) |
IMbrave 150 (Atezo/Beva119 Sorafenib 58) |
<Transcriptome analyses> | Zhu AX et. al. [72] |
||||
| [ABRSa high] | PFS | univariate | 0.51 [0.3-0.87] | 0.013 | ||||
| [CD274b high] | PFS | univariate | 0.42 [0.25-0.72] | 0.0011 | ||||
| [Teffc high] | PFS | univariate | 0.46 [0.27-0.78] | 0.0035 | ||||
| <In situ analyses> | ||||||||
| [CD8+Tcell density] | CR/PR | Student T | - | 0.007 | ||||
| [CD3+Tcell density] | CR/PR | Student T | - | 0.039 | ||||
| [CD3+GZMB+Tcell density] | CR/PR | Student T | - | 0.044 | ||||
| [MHC1+ tumor cells] | CR/PR | Student T | - | 0.0087 | ||||
| <Transcriptome analyses> | ||||||||
| [ABRSa high] | PFS | multivariate | 0.49 [0.25-0.97] | 0.041 | ||||
| OS | multivariate | 0.26 [0.11-0.58] | 0.0012 | |||||
| [CD274b high] | PFS | multivariate | 0.46 [0.25-0.86] | 0.015 | ||||
| OS | multivariate | 0.3 [0.14-0.64] | 0.002 | |||||
| [Teffc high] | PFS | multivariate | 0.52 [0.28-0.99] | 0.047 | ||||
| OS | multivariate | 0.24 [0.11-0.5] | 0.0002 | |||||
| [Tregd/Teff c low] | PFS | multivariate | 0.42 [0.22-0.79] | 0.007 | ||||
| OS | multivariate | 0.24 [0.11-0.54] | 0.0006 | |||||
| [GPC3 low] | PFS | multivariate | 0.47 [0.27-0.81] | 0.006 | ||||
| OS | multivariate | 0.29 [0.13-0.62] | 0.002 | |||||
| [AFP low] | PFS | multivariate | 0.49 [0.28-0.87] | 0.014 | ||||
| OS | multivariate | 0.32 [0.14-0.73] | 0.007 | |||||
| <In situ analyses> | ||||||||
| [CD8+Tcell high dens.] | OS | multivariate | 0.29 [0.14-0.61] | 0.0011 | ||||
| PFS | multivariate | 0.54 [0.29-1.00] | 0.053 | |||||
| <Genetic profiling> | ||||||||
| [CTNNB1 WT] | OS | multivariate | 0.42 [0.19-0.91] | 3×10-4 | ||||
| PFS | multivariate | 0.45 [0.27-0.86] | 0.0086 | |||||
| [TERT Mut] | OS | multivariate | 0.38 [0.16-0.89] | 7.8×10-5 | ||||
| PFS | multivariate | 0.61 [0.33-1.10] | 0.047 | |||||
| Atezo/Beva | retrospective, single arm |
34 | [high plasma IL-6] | PFS | univariate | - | <0.05 | Myojin Y et.al. [103] |
| multivariate | 2.785 [1.216-6.38] | 0.01 | ||||||
| OS | univariate | - | <0.05 | |||||
| Atezo/Beva Lenvatinib |
retrospective, separate single arm (not vs Lenvatinib) | Ate/Bev 24 | [High-level CD8+ TILs] | PFS | univariate | - | 0.041 | Kuwano A et.al. [104] |
| ORR | Chi square | - | 0.012 | |||||
| DCR | Chi square | - | 0.031 | |||||
| Lenvatinib 15 | (no significant factor) | |||||||
4.7. Biomarkers for Durvalumab and Tremelimumab Combination Therapy
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Ethics approval and consent to participate
Acknowledgments
Conflicts of Interest
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology. 2021, 73, 4–13. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers. 2021, 7, 6 . [Google Scholar] [CrossRef]
- Mathurin, P.; Rixe, O.; Carbonell, N.; Bernard, B.; Cluzel, P.; Bellin, M.F.; Khayat, D.; Opolon, P.; Poynard, T. Overview of medical treatments in unresectable hepatocellular carcinoma--an impossible meta-analysis? Aliment Pharmacol. Ther. 1998, 12, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.-K.; Yen, C.-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Dao, T.V.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.H.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Peña, C.E.A.; Lathia, C.D.; Shan, M.; Meinhardt, G.; Bruix, J. ; SHARP Investigators Study Group (2012). Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer. Res. 2012, 18, 2290–2300. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, K.; Nouso, K.; Morimoto, Y.; Takeuchi, Y.; Hagihara, H.; Kuwaki, K.; Onishi, H.; Ikeda, F.; Miyake, Y.; Nakamura, S.; et al. Pro-angiogenic cytokines for prediction of outcomes in patients with advanced hepatocellular carcinoma. Br. J. Cancer. 2013, 109, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Cheng, A.-L.; Meinhardt, G.; Nakajima, K.; De Sanctis, Y.; Llovet, J. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: Analysis of two phase III studies. J. Hepatol. 2017, 67, 999–1008. [Google Scholar] [CrossRef]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef]
- Qi, X.; Li, J.; Deng, H.; Li, H.; Su, C.; Guo, X. Neutrophil-to-lymphocyte ratio for the prognostic assessment of hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. Oncotarget. 2016, 7, 45283–45301. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kudo, M.; Venook, A.P.; Ye, S.-L.; Bronowicki, J.-P.; Chen, X.-P.; Dagher, L.; Furuse, J.; Geschwind, J.-F.H.; Ladrón de Guevara, L.; et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J. Hepatol. 2016, 65, 1140–1147. [Google Scholar] [CrossRef]
- Kuwano, A.; Yada, M.; Nagasawa, S.; Tanaka, K.; Morita, Y.; Masumoto, A.; Motomura, K. Hepatitis C virus eradication ameliorates the prognosis of advanced hepatocellular carcinoma treated with sorafenib. J. Viral Hepat. 2022, 29, 543–550. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Chang, H.-P.; Chen, C.-J.; Hsu, W.-L.; Huang, L.-Y.; Lee, P.-C. Effects of direct-acting antiviral therapy for patients with advanced hepatocellular carcinoma and concomitant hepatitis C-A population-based cohort study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7543–7552. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Schwartz, L.; Ricci, S.; Amadori, D.; Santoro, A.; Figer, A.; De Greve, J.; Douillard, J.Y.; Lathia, C.; Schwartz, B.; et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 2006, 24, 4293–4300. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhao, P.; Li, S.Q.; Xiao, W.K.; Yin, X.Y.; Peng, B.G.; Liang, L.J. Prognostic impact of pERK in advanced hepatocellular carcinoma patients treated with sorafenib. Eur. J. Surg. Oncol. 2013, 39, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Negri, F.; Bello, B.D.; Porta, C.; Campanini, N.; Rossi, S.; Tinelli, C.; Poggi, G.; Missale, G.; Fanello, S.; Salvagni, S.; et al. Expression of pERK and VEGFR-2 in advanced hepatocellular carcinoma and resistance to sorafenib treatment. Liver Int. 2015, 35, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Personeni, N.; Rimassa, L.; Pressiani, T.; Destro, A.; Ligorio, C.; Tronconi, M.C.; Bozzarelli, S.; Carnaghi, C.; Di Tommaso, L.; Giordano, L.; et al. Molecular determinants of outcome in sorafenib-treated patients with hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2013, 139, 1179–1187. [Google Scholar] [CrossRef]
- Arao, T.; Ueshima, K.; Matsumoto, K.; Nagai, T.; Kimura, H.; Hagiwara, S.; Sakurai, T.; Haji, S.; Kanazawa, A.; Hidaka, H.; et al. FGF3/FGF4 amplification and multiple lung metastases in responders to sorafenib in hepatocellular carcinoma. Hepatology. 2013, 57, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef]
- Gyöngyösi, B.; Végh, É.; Járay, B.; Székely, E.; Fassan, M.; Bodoky, G.; Schaff, Z.; Kiss, A. Pretreatment MicroRNA Level and Outcome in Sorafenib-treated Hepatocellular Carcinoma. J. Histochem. Cytochem. 2014, 62, 547–555. [Google Scholar] [CrossRef]
- Giordano, S.; Columbano, A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 2013, 57, 840–847. [Google Scholar] [CrossRef]
- Ghidini, M.; Braconi, C. Non-Coding RNAs in Primary Liver Cancer. Front. Med. (Lausanne). 2015, 2, 36. [Google Scholar] [CrossRef]
- Vaira, V.; Roncalli, M.; Carnaghi, C.; Faversani, A.; Maggioni, M.; Augello, C.; Rimassa, L.; Pressiani, T.; Spagnuolo, G.; Di Tommaso, L.; et al. MicroRNA-425-3p predicts response to sorafenib therapy in patients with hepatocellular carcinoma. Liver Int. 2015, 35, 1077–1086. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z.; Lin, Q.; Luo, Q.; Cen, Y.; Li, J.; Fang, X.; Gong, C. MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes (Basel). 2021, 12, 1289. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Li, H.; Zhang, Z.; Zhu, Z.; He, S.; Wang, X.; Wang, P.; Qin, J.; Zhuang, L.; Wang, W.; et al. A Pharmacogenomic Landscape in Human Liver Cancers. Cancer Cell. 2019, 36, 179–193e11. [Google Scholar] [CrossRef] [PubMed]
- Semënov, M.V.; Zhang, X.; He, X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem. 2008, 283, 21427–21432. [Google Scholar] [CrossRef] [PubMed]
- Teufel, M.; Seidel, H.; Köchert, K.; Meinhardt, G.; Finn, R.S.; Llovet, J.M.; Bruix, J. Biomarkers Associated With Response to Regorafenib in Patients With Hepatocellular Carcinoma. Gastroenterology. 2019, 156, 1731–1741. [Google Scholar] [CrossRef] [PubMed]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef]
- Cataldo, V.D.; Gibbons, D.L.; Pérez-Soler, R.; Quintás-Cardama, A. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N. Engl. J. Med. 2011, 364, 947–955. [Google Scholar] [CrossRef]
- Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef]
- Llovet, J.M.; Hernandez-Gea, V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin. Cancer Res. 2014, 20, 2072–2079. [Google Scholar] [CrossRef]
- Villanueva, A.; Chiang, D.Y.; Newell, P.; Peix, J.; Thung, S.; Alsinet, C.; Tovar, V.; Roayaie, S.; Minguez, B.; Sole, M.; et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008, 135, 1972–1983. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kudo, M.; Assenat, E.; Cattan, S.; Kang, Y.K.; Lim, H.Y.; Poon, R.T.; Blanc, J.F.; Vogel, A.; Chen, C.L.; et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA. 2014, 312, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Finn, R.S. Personalized Clinical Trials in Hepatocellular Carcinoma Based on Biomarker Selection. Liver Cancer. 2016, 5, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Rimassa, L.; Borbath, I.; Daniele, B.; Salvagni, S.; Van Laethem, J.L.; Van Vlierberghe, H.; Trojan, J.; Kolligs, F.T.; Weiss, A.; et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013, 14, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Rimassa, L.; Assenat, E.; Peck-Radosavljevic, M.; Pracht, M.; Zagonel, V.; Mathurin, P.; Rota Caremoli, E.; Porta, C.; Daniele, B.; Bolondi, L.; et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 2018, 19, 682–693. [Google Scholar] [CrossRef]
- Kudo, M.; Morimoto, M.; Moriguchi, M.; Izumi, N.; Takayama, T.; Yoshiji, H.; Hino, K.; Oikawa, T.; Chiba, T.; Motomura, K.; et al. A randomized, double-blind, placebo-controlled, phase 3 study of tivantinib in Japanese patients with MET-high hepatocellular carcinoma. Cancer Sci. 2020, 111, 3759–3769. [Google Scholar] [CrossRef]
- Rimassa, L.; Kelley, R.K.; Meyer, T.; Ryoo, B.Y.; Merle, P.; Park, J.W.; Blanc, J.F.; Lim, H.Y.; Tran, A.; Chan, Y.W.; et al. Outcomes Based on Plasma Biomarkers for the Phase 3 CELESTIAL Trial of Cabozantinib versus Placebo in Advanced Hepatocellular Carcinoma. Liver Cancer. 2021, 11, 38–47. [Google Scholar] [CrossRef]
- Totoki, Y.; Tatsuno, K.; Covington, K.R.; Ueda, H.; Creighton, C.J.; Kato, M.; Tsuji, S.; Donehower, L.A.; Slagle, B.L.; Nakamura, H.; et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 2014, 46, 1267–1273. [Google Scholar] [CrossRef]
- Schulze, K.; Imbeaud, S.; Letouzé, E.; Alexandrov, L.B.; Calderaro, J.; Rebouissou, S.; Couchy, G.; Meiller, C.; Shinde, J.; Soysouvanh, F.; et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015, 47, 505–511. [Google Scholar] [CrossRef]
- Xue, R.; Li, R.; Guo, H.; Guo, L.; Su, Z.; Ni, X.; Qi, L.; Zhang, T.; Li, Q.; Zhang, Z.; et al. Variable Intra-Tumor Genomic Heterogeneity of Multiple Lesions in Patients With Hepatocellular Carcinoma. Gastroenterology. 2016, 150, 998–1008. [Google Scholar] [CrossRef]
- Pinter, M.; Peck-Radosavljevic, M. Review article: systemic treatment of hepatocellular carcinoma. Aliment Pharmacol. Ther. 2018, 48, 598–609. [Google Scholar] [CrossRef]
- Tohyama, O.; Matsui, J.; Kodama, K.; Hata-Sugi, N.; Kimura, T.; Okamoto, K.; Minoshima, Y.; Funahashi, Y. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid Res. 2014, 2014, 638747. [Google Scholar] [CrossRef]
- Matsuki, M.; Hoshi, T.; Yamamoto, Y.; Ikemori-Kawada, M.; Minoshima, Y.; Funahashi, Y.; Matsui, J. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018, 7, 2641–2653. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Hiraoka, A.; Michitaka, K.; Atsukawa, M.; Hirooka, M.; Tsuji, K.; Ishikawa, T.; Takaguchi, K.; Kariyama, K.; et al. Neutrophil-to-lymphocyte ratio is associated with survival in patients with unresectable hepatocellular carcinoma treated with lenvatinib. Liver Int. 2020, 40, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Casadei-Gardini, A.; Rimini, M.; Kudo, M.; Shimose, S.; Tada, T.; Suda, G.; Goh, M.J.; Jefremow, A.; Scartozzi, M.; Cabibbo, G.; et al. Real Life Study of Lenvatinib Therapy for Hepatocellular Carcinoma: RELEVANT Study. Liver Cancer. 2022, 11, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Myojin, Y.; Kodama, T.; Maesaka, K.; Motooka, D.; Sato, Y.; Tanaka, S.; Abe, Y.; Ohkawa, K.; Mita, E.; Hayashi, Y.; et al. ST6GAL1 Is a Novel Serum Biomarker for Lenvatinib-Susceptible FGF19-Driven Hepatocellular Carcinoma. Clin. Cancer Res. 2021, 27, 1150–1161. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.J.; Linley, A.; Hammond, D.E.; Hood, F.E.; Coulson, J.M.; MacEwan, D.J.; Ross, S.J.; Slupsky, J.R.; Smith, P.D.; Eyers, P.A.; et al. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O'Bryant, C.; Chow, L.Q.M.; Serkova, N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Mulcahy, M.; Gurtler, J.; Sun, W.; Schwartz, J.D.; Dalal, R.P.; Joshi, A.; Hozak, R.R.; Xu, Y.; et al. A phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular cancer. Clin. Cancer Res. 2013, 19, 6614–6623. [Google Scholar] [CrossRef]
- Zhu, A.X.; Park, J.O.; Ryoo, B.Y.; Yen, C.J.; Poon, R.; Pastorelli, D.; Blanc, J.F.; Chung, H.C.; Baron, A.D.; Pfiffer, T.E.F.; et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015, 16, 859–870. [Google Scholar] [CrossRef]
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O'Bryant, C.; Chow, L.Q.M.; Serkova, N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [Google Scholar] [CrossRef]
- Montal, R.; Andreu-Oller, C.; Bassaganyas, L.; Esteban-Fabró, R.; Moran, S.; Montironi, C.; Moeini, A.; Pinyol, R.; Peix, J.; Cabellos, L.; et al. Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: implications for biomarker-driven clinical trials. Br. J. Cancer. 2019, 121, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Donne, R.; Lujambio, A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology. 2023, 77, 1773–1796. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling Rd, T.H.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017, 389, 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.-Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab Versus Placebo as Second-Line Therapy in Patients From Asia With Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2023, 41, 1434–1443. [Google Scholar] [CrossRef]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996, 271, 1734–1736. [Google Scholar] [CrossRef]
- Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA. 2002, 99, 12293–12297. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O'Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
- Ang, C.; Klempner, S.J.; Ali, S.M.; Madison, R.; Ross, J.S.; Severson, E.A.; Fabrizio, D.; Goodman, A.; Kurzrock, R.; Suh, J.; Millis, S.Z. Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget. 2019, 10, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Abbas, A.R.; de Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; Zhang, W.; Hsu, C.H.; He, A.R.; Ryoo, B.Y.; et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 2022, 28, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Pembrolizumab for the Treatment of Hepatocellular Carcinoma. Liver Cancer. 2019, 8, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; Mauri, F.A.; Spina, P.; Cain, O.; Siddique, A.; Goldin, R.; Victor, S.; Pizio, C.; Akarca, A.U.; Boldorini, R.L.; et al. Clinical implications of heterogeneity in PD-L1 immunohistochemical detection in hepatocellular carcinoma: the Blueprint-HCC study. Br. J. Cancer. 2019, 120, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021, 592, 450–456. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Rimini, M.; Rimassa, L.; Ueshima, K.; Burgio, V.; Shigeo, S.; Tada, T.; Suda, G.; Yoo, C.; Cheon, J.; Pinato, D.J.; et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: an international propensity score matching analysis. ESMO Open. 2022, 7, 100591. [Google Scholar] [CrossRef]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015, 523, 231–235. [Google Scholar] [CrossRef]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2019, 25, 2116–2126. [Google Scholar] [CrossRef]
- Ueno, A.; Masugi, Y.; Yamazaki, K.; Komuta, M.; Effendi, K.; Tanami, Y.; Tsujikawa, H.; Tanimoto, A.; Okuda, S.; Itano, O.; et al. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J. Hepatol. 2014, 61, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Nishida, N.; Ueshima, K.; Morita, M.; Chishina, H.; Takita, M.; Hagiwara, S.; Ida, H.; Minami, Y.; Yamada, A.; et al. Higher Enhancement Intrahepatic Nodules on the Hepatobiliary Phase of Gd-EOB-DTPA-Enhanced MRI as a Poor Responsive Marker of Anti-PD-1/PD-L1 Monotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer. 2021, 10, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Kubo, A.; Suda, G.; Kimura, M.; Maehara, O.; Tokuchi, Y.; Kitagataya, T.; Ohara, M.; Yamada, R.; Shigesawa, T.; Suzuki, K.; et al. Characteristics and Lenvatinib Treatment Response of Unresectable Hepatocellular Carcinoma with Iso-High Intensity in the Hepatobiliary Phase of EOB-MRI. Cancers (Basel). 2021, 13, 3633. [Google Scholar] [CrossRef]
- Kuwano, A.; Tanaka, K.; Yada, M.; Nagasawa, S.; Morita, Y.; Masumoto, A.; Motomura, K. Therapeutic efficacy of lenvatinib for hepatocellular carcinoma with iso-high intensity in the hepatobiliary phase of Gd-EOB-DTPA-MRI. Mol. Clin. Oncol. 2022, 16, 53. [Google Scholar] [CrossRef]
- Murai, H.; Kodama, T.; Maesaka, K.; Tange, S.; Motooka, D.; Suzuki, Y.; Shigematsu, Y.; Inamura, K.; Mise, Y.; Saiura, A.; et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology. 2023, 77, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, R.; Nagata, K.; Fukushima, M.; Haraguchi, M.; Miuma, S.; Miyaaki, H.; Soyama, A.; Hidaka, M.; Eguchi, S.; Shigeno, M.; et al. Evaluating the Role of Hepatobiliary Phase of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Predicting Treatment Impact of Lenvatinib and Atezolizumab plus Bevacizumab on Unresectable Hepatocellular Carcinoma. Cancers (Basel). 2022, 14, 827. [Google Scholar] [CrossRef]
- Kuwano, A.; Yada, M.; Narutomi, F.; Nagasawa, S.; Tanaka, K.; Kurosaka, K.; Ohishi, Y.; Masumoto, A.; Motomura, K. Therapeutic efficacy of atezolizumab plus bevacizumab for hepatocellular carcinoma with WNT/β-catenin signal activation. Oncol. Lett. 2022, 24, 216. [Google Scholar] [CrossRef]
- Yamashita, T.; Kitao, A.; Matsui, O.; Hayashi, T.; Nio, K.; Kondo, M.; Ohno, N.; Miyati, T.; Okada, H.; Yamashita, T.; et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology. 2014, 60, 1674–1685. [Google Scholar] [CrossRef]
- Hagiwara, S.; Nishida, N.; Kudo, M. Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel). 2023, 15, 2070. [Google Scholar] [CrossRef]
- Sia, D.; Jiao, Y.; Martinez-Quetglas, I.; Kuchuk, O.; Villacorta-Martin, C.; Castro de Moura, M.; Putra, J.; Camprecios, G.; Bassaganyas, L.; Akers, N.; et al. Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology. 2017, 153, 812–826. [Google Scholar] [CrossRef]
- Montironi, C.; Castet, F.; Haber, P.K.; Pinyol, R.; Torres-Martin, M.; Torrens, L.; Mesropian, A.; Wang, H.; Puigvehi, M.; Maeda, M.; et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. J. Hepatol. 2023, 72, 129–140. [Google Scholar] [CrossRef]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef]
- Scheiner, B.; Pomej, K.; Kirstein, M.M.; Hucke, F.; Finkelmeier, F.; Waidmann, O.; Himmelsbach, V.; Schulze, K.; von Felden, J.; Fründt, T.W.; et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy - development and validation of the CRAFITY score. J. Hepatol. 2022, 76, 353–363. [Google Scholar] [CrossRef]
- Hatanaka, T.; Kakizaki, S.; Hiraoka, A.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; et al. Prognostic impact of C-reactive protein and alpha-fetoprotein in immunotherapy score in hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: a multicenter retrospective study. Hepatol. Int. 2022, 16, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Capone, M.; Giannarelli, D.; Mallardo, D.; Madonna, G.; Festino, L.; Grimaldi, A.M.; Vanella, V.; Simeone, E.; Paone, M.; Palmieri, G.; et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer. 2018, 6, 74. [Google Scholar] [CrossRef]
- Bilen, M.A.; Dutcher, G.M.A.; Liu, Y.; Ravindranathan, D.; Kissick, H.T.; Carthon, B.C.; Kucuk, O.; Harris, W.B.; Master, V.A. Association Between Pretreatment Neutrophil-to-Lymphocyte Ratio and Outcome of Patients With Metastatic Renal-Cell Carcinoma Treated With Nivolumab. Clin. Genitourin. Cancer. 2018, 16, e563–e575. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T.; Satake, H.; Ogata, M.; Hatachi, Y.; Inoue, K.; Hamada, M.; Yasui, H. Neutrophil-to-lymphocyte ratio as a predictive or prognostic factor for gastric cancer treated with nivolumab: a multicenter retrospective study. Oncotarget. 2018, 9, 34520–34527. [Google Scholar] [CrossRef]
- Bagley, S.J.; Kothari, S.; Aggarwal, C.; Bauml, J.M.; Alley, E.W.; Evans, T.L.; Kosteva, J.A.; Ciunci, C.A.; Gabriel, P.E.; Thompson, J.C.; et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer. 2017, 106, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Eso, Y.; Takeda, H.; Taura, K.; Takai, A.; Takahashi, K.; Seno, H. Pretreatment Neutrophil-to-Lymphocyte Ratio as a Predictive Marker of Response to Atezolizumab Plus Bevacizumab for Hepatocellular Carcinoma. Curr. Oncol. 2021, 28, 4157–4166. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Hiraoka, A.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S.; et al. Neutrophil-lymphocyte ratio predicts early outcomes in patients with unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab: a multicenter analysis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Durvalumab Plus Tremelimumab: A Novel Combination Immunotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer. 2022, 11, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Myojin, Y.; Kodama, T.; Sakamori, R.; Maesaka, K.; Matsumae, T.; Sawai, Y.; Imai, Y.; Ohkawa, K.; Miyazaki, M.; Tanaka, S.; et al. Interleukin-6 Is a Circulating Prognostic Biomarker for Hepatocellular Carcinoma Patients Treated with Combined Immunotherapy. Cancers (Basel). 2022, 14, 883. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, A.; Yada, M.; Miyazaki, Y.; Tanaka, K.; Kurosaka, K.; Ohishi, Y.; Masumoto, A.; Motomura, K. Tumor-infiltrating CD8+ T cells as a biomarker for chemotherapy efficacy in unresectable hepatocellular carcinoma. Oncol. Lett. 2023, 25, 259. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
