Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Monitoring Braided River-Bed Dynamics at Sub-Event Time Scale Using Time Series of Sentinel-1 SAR Imagery

Version 1 : Received: 6 June 2023 / Approved: 8 June 2023 / Online: 8 June 2023 (05:00:07 CEST)

A peer-reviewed article of this Preprint also exists.

Rossi, D.; Zolezzi, G.; Bertoldi, W.; Vitti, A. Monitoring Braided River-Bed Dynamics at the Sub-Event Time Scale Using Time Series of Sentinel-1 SAR Imagery. Remote Sens. 2023, 15, 3622. Rossi, D.; Zolezzi, G.; Bertoldi, W.; Vitti, A. Monitoring Braided River-Bed Dynamics at the Sub-Event Time Scale Using Time Series of Sentinel-1 SAR Imagery. Remote Sens. 2023, 15, 3622.

Abstract

Remote sensing plays a central role in the assessment of environmental phenomena and has increasingly become a powerful tool for monitoring shorelines, rivers morphology, flood waves delineation and floods assessment. Optical based monitoring and characterization of river evolution at long time scales is a key tool in fluvial geomorphology. However, the evolution occurring during extreme events is crucial for the understanding of the river dynamics under severe flow conditions and requires the processing of data from active sensors to overcome cloud obstructions. This work proposes a cloud-based unsupervised algorithm for the intra-event monitoring of river dynamics during extreme flow conditions based on time series of Sentinel-1 SAR data. The method allows the extraction of multi-temporal series of spatially explicit geometric parameters at high time and spatial resolutions, linking them to the hydrometric levels acquired by reference gauge stations. Intra-event reconstruction of inundation dynamics has led to the estimation of the relationship between hydrometric level and wet area extension and the assessment of bank erosion phenomena. Time series of SAR acquisitions, provided by Copernicus Sentinel-1 satellites, were analyzed to quantify changes in the wet area of a reach of the Tagliamento river under different flow conditions. The algorithm, developed within the Python-API of GEE, first empowers the Sentinel-1 images with the hydrometric level, then involves radiometric slope correction and speckle noise filtering. The Otsu method is then used for image segmentation leading to a water and dry land binary classification. Results support many types of analysis about river dynamics, including morphological changes, floods monitoring and relief efforts and bio-physical habitat dynamics. The results encourage future advancements and applications of the algorithm, specifically exploring SAR data from ICEYE and Capella Space constellations, which offer significantly higher spatial and temporal resolutions compared to Sentinel-1 data.

Keywords

SAR; Gravel-bed rivers; Morphodynamics; Flood dynamics; River bank erosion

Subject

Environmental and Earth Sciences, Remote Sensing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.