Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Functional Ghobber-Jaming Uncertainty Principle

Version 1 : Received: 1 June 2023 / Approved: 2 June 2023 / Online: 2 June 2023 (03:24:54 CEST)

How to cite: KRISHNA, K.M. Functional Ghobber-Jaming Uncertainty Principle. Preprints 2023, 2023060116. https://doi.org/10.20944/preprints202306.0116.v1 KRISHNA, K.M. Functional Ghobber-Jaming Uncertainty Principle. Preprints 2023, 2023060116. https://doi.org/10.20944/preprints202306.0116.v1

Abstract

Let $(\{f_j\}_{j=1}^n, \{\tau_j\}_{j=1}^n)$ and $(\{g_k\}_{k=1}^n, \{\omega_k\}_{k=1}^n)$ be two p-orthonormal bases for a finite dimensional Banach space $\mathcal{X}$. Let $M,N\subseteq \{1, \dots, n\}$ be such that \begin{align*} o(M)^\frac{1}{q}o(N)^\frac{1}{p}< \frac{1}{\displaystyle \max_{1\leq j,k\leq n}|g_k(\tau_j) |}, \end{align*} where $q$ is the conjugate index of $p$. Then for all $x \in \mathcal{X}$, we show that \begin{align}\label{FGJU} (1) \quad \quad \quad \quad \|x\|\leq \left(1+\frac{1}{1-o(M)^\frac{1}{q}o(N)^\frac{1}{p}\displaystyle\max_{1\leq j,k\leq n}|g_k(\tau_j)|}\right)\left[\left(\sum_{j\in M^c}|f_j(x)|^p\right)^\frac{1}{p}+\left(\sum_{k\in N^c}|g_k(x) |^p\right)^\frac{1}{p}\right]. \end{align} We call Inequality (1) as \textbf{Functional Ghobber-Jaming Uncertainty Principle}. Inequality (1) improves the uncertainty principle obtained by Ghobber and Jaming \textit{[Linear Algebra Appl., 2011]}.

Keywords

Uncertainty Principle; Orthonormal Basis; Hilbert space; Banach space

Subject

Computer Science and Mathematics, Analysis

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.