Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Anomaly-based Intrusion Detection System for IoT Networks With Improved Data Engineering

Version 1 : Received: 25 October 2022 / Approved: 27 October 2022 / Online: 27 October 2022 (10:57:09 CEST)

A peer-reviewed article of this Preprint also exists.

Alsulami, A.A.; Abu Al-Haija, Q.; Tayeb, A.; Alqahtani, A. An Intrusion Detection and Classification System for IoT Traffic with Improved Data Engineering. Applied Sciences 2022, 12, 12336, doi:10.3390/app122312336. Alsulami, A.A.; Abu Al-Haija, Q.; Tayeb, A.; Alqahtani, A. An Intrusion Detection and Classification System for IoT Traffic with Improved Data Engineering. Applied Sciences 2022, 12, 12336, doi:10.3390/app122312336.

Abstract

Nowadays, the Internet of Things (IoT) devices and applications have rapidly expanded worldwide due to their benefits in improving the business environment, industrial environment, and people's daily lives. However, the IoT devices are not immune to malicious network traffic, which causes potential negative consequences and sabotages IoT operating devices. Therefore, developing a method for screening network traffic is necessary to detect and classify malicious activity to mitigate its negative impacts. Therefore, this research proposes a predictive machine learning model to detect and classify network activity in an IoT system. Specifically, our model distinguishes between normal and anomaly network activity. Furthermore, it classifies network traffic into five categories, normal, Mirai attack, denial of service (DoS) attack, Scan attack, and man-in-the-middle (MITM) attack. Five supervised learning models were implemented to characterize their performance in detecting and classifying network activities for IoT systems. This includes models shallow neural networks (SNN), decision trees (DT), bagging trees (BT), support vector machine (SVM), and k-nearest neighbor (kNN). The learning models were evaluated on a new and broad dataset for IoT attacks, the IoTID20 dataset. Besides, a deep feature engineering process was applied to the dataset to improve the accuracy of the learning models. Our experimental evaluation exhibited an accuracy of 100% recorded for the detection using all implemented models and an accuracy of 99.4%-99.9% recorded for the classification process.

Keywords

Supervised machine learning; intrusion detection; data engineering; cybersecurity; Internet of Things.

Subject

Computer Science and Mathematics, Artificial Intelligence and Machine Learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.