Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Non-Archimedean and p-adic Functional Welch Bounds

Version 1 : Received: 31 August 2022 / Approved: 1 September 2022 / Online: 1 September 2022 (04:13:43 CEST)

How to cite: KRISHNA, K.M. Non-Archimedean and p-adic Functional Welch Bounds. Preprints 2022, 2022090005. https://doi.org/10.20944/preprints202209.0005.v1 KRISHNA, K.M. Non-Archimedean and p-adic Functional Welch Bounds. Preprints 2022, 2022090005. https://doi.org/10.20944/preprints202209.0005.v1

Abstract

We prove the non-Archimedean (resp. p-adic) Banach space version of non-Archimedean (resp. p-adic) Welch bounds recently obtained by M. Krishna. More precisely, we prove following results. \begin{enumerate}[\upshape(i)] \item Let $\mathbb{K}$ be a non-Archimedean (complete) valued field satisfying $\left|\sum_{j=1}^{n}\lambda_j^2\right|=\max_{1\leq j \leq n}|\lambda_j|^2$ for all $ \lambda_j \in \mathbb{K}, 1\leq j \leq n$, for all $n \in \mathbb{N}.$ Let $\mathcal{X}$ be a $d$-dimensional non-Archimedean Banach space over $\mathbb{K}$. If $\{\tau_j\}_{j=1}^n$ is any collection in $\mathcal{X}$ and $\{f_j\}_{j=1}^n$ is any collection in $\mathcal{X}^*$ (dual of $\mathcal{X}$) satisfying $f_j(\tau_j) =1$ for all $1\leq j \leq n$ and the operator $S_{f, \tau} : \text{Sym}^m(\mathcal{X})\ni x \mapsto \sum_{j=1}^nf_j^{\otimes m}(x)\tau_j^{\otimes m} \in \text{Sym}^m(\mathcal{X})$, is diagonalizable, then \begin{align}\label{NONFUNCTIONALWELCH} \max_{1\leq j,k \leq n, j \neq k}\{|n|, |f_j(\tau_k)f_k(\tau_j)|^{m} \}\geq \frac{|n|^2}{\left|{d+m-1 \choose m}\right| }. \end{align} We call Inequality (\ref{NONFUNCTIONALWELCH}) as non-Archimedean functional Welch bounds. \item For a prime $p$, let $\mathbb{Q}_p$ be the p-adic number field. Let $\mathcal{X}$ be a $d$-dimensional p-adic Banach space over $\mathbb{Q}_p$. If $\{\tau_j\}_{j=1}^n$ is any collection in $\mathcal{X}$ and $\{f_j\}_{j=1}^n$ is any collection in $\mathcal{X}^*$ (dual of $\mathcal{X}$) satisfying $f_j(\tau_j) =1$ for all $1\leq j \leq n$ and there exists $b \in \mathbb{Q}_p$ such that $ \sum_{j=1}^{n}f_j^{\otimes m}(x) \tau_j^{\otimes m} =bx$ for all $ x \in \text{Sym}^m(\mathcal{X}),$ then \begin{align}\label{PADICFUNCTIONALWELCH} \max_{1\leq j,k \leq n, j \neq k}\{|n|, |f_j(\tau_k)f_k(\tau_j)|^{m} \}\geq \frac{|n|^2}{\left|{d+m-1 \choose m}\right| }. \end{align} We call Inequality (\ref{PADICFUNCTIONALWELCH}) as p-adic functional Welch bounds. \end{enumerate} We formulate non-Archimedean functional and p-adic functional Zauner conjectures.

Keywords

Non-Archimedean valued field; Non-Archimedean Banach space; p-adic number field; p-adic Banach space; Welch bound; Zauner conjecture

Subject

Computer Science and Mathematics, Analysis

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.