Preprint
Article

Convolutional Extreme Learning Machines: A Systematic Review

Altmetrics

Downloads

461

Views

288

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 April 2021

Posted:

28 April 2021

You are already at the latest version

Alerts
Abstract
Many works have recently identified the need to combine deep learning with extreme learning to strike a performance balance with accuracy especially in the domain of multimedia applications. Considering this new paradigm, namely convolutional extreme learning machine (CELM), we present a systematic review that investigates alternative deep learning architectures that use extreme learning machine (ELM) for a faster training to solve problems based on image analysis. We detail each of the architectures found in the literature, application scenarios, benchmark datasets, main results, advantages, and present the open challenges for CELM. We follow a well structured methodology and establish relevant research questions that guide our findings. We hope that the observation and classification of such works can leverage the CELM research area providing a good starting point to cope with some of the current problems in the image-based computer vision analysis.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated