Preprint Article Version 2 This version is not peer-reviewed

Whole body vibration therapy after ischemia reduces brain damage in reproductively senescent female rats

Version 1 : Received: 10 July 2018 / Approved: 11 July 2018 / Online: 11 July 2018 (08:59:15 CEST)
Version 2 : Received: 23 August 2018 / Approved: 23 August 2018 / Online: 23 August 2018 (07:59:58 CEST)

A peer-reviewed article of this Preprint also exists.

Raval, A.P.; Schatz, M.; Bhattacharya, P.; d’Adesky, N.; Rundek, T.; Dietrich, W.D.; Bramlett, H.M. Whole Body Vibration Therapy after Ischemia Reduces Brain Damage in Reproductively Senescent Female Rats. Int. J. Mol. Sci. 2018, 19, 2749. Raval, A.P.; Schatz, M.; Bhattacharya, P.; d’Adesky, N.; Rundek, T.; Dietrich, W.D.; Bramlett, H.M. Whole Body Vibration Therapy after Ischemia Reduces Brain Damage in Reproductively Senescent Female Rats. Int. J. Mol. Sci. 2018, 19, 2749.

Journal reference: Int. J. Mol. Sci. 2018, 19, 2749
DOI: 10.3390/ijms19092749

Abstract

A risk of ischemic stroke increases exponentially after menopause. Even a mild-ischemic stroke can result in increased frailty. Frailty is a state of increased vulnerability to adverse outcomes, which subsequently increases risk of cerebrovascular events and severe cognitive decline, particularly after menopause. Several interventions to reduce frailty and subsequent risk of stroke and cognitive decline have been proposed in laboratory animals and patients. One of them is whole body vibration (WBV). WBV recuperates cerebral function and cognitive ability that deteriorates with increased frailty. The goal of the current study is to test the efficacy of WBV in reducing post-ischemic stroke frailty and brain damage in reproductively senescent female rats. Reproductively senescent Sprague–Dawley female rats were exposed to transient middle cerebral artery occlusion (tMCAO) and randomly assigned to either WBV or control groups. Animals placed in the WBV group underwent 30 days of WBV (40 Hz) treatment performed twice daily for 15 min each session, 5 days each week. The motor functions of animals belonging to both groups were tested intermittently and at the end of treatment period. Brains were then harvested for inflammatory markers and histopathological analysis. The results demonstrate a significant reduction in inflammatory markers and infarct volume with significant increases in brain-derived neurotrophic factor and improvement in functional activity after tMCAO in middle-aged female rats that were treated with WBV as compared to the control group. Our results may facilitate a faster translation of the WBV intervention for improved outcome after stroke, particularly among frail women.

Subject Areas

brain-derived neurotrophic factor; Frailty; Inflammasome proteins; Interleukin-1β; Peri-infarct area

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.