Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Lipid Composition-, Medium pH-, and Drug Concentration-Dependent Membrane Interactions of Ibuprofen, Diclofenac, and Celecoxib: Hypothetical Association with Their Analgesic and Gastrointestinal Toxic Effects

Version 1 : Received: 16 May 2024 / Approved: 16 May 2024 / Online: 17 May 2024 (03:10:22 CEST)

How to cite: Mizogami, M.; Tsuchiya, H. Lipid Composition-, Medium pH-, and Drug Concentration-Dependent Membrane Interactions of Ibuprofen, Diclofenac, and Celecoxib: Hypothetical Association with Their Analgesic and Gastrointestinal Toxic Effects. Preprints 2024, 2024051100. https://doi.org/10.20944/preprints202405.1100.v1 Mizogami, M.; Tsuchiya, H. Lipid Composition-, Medium pH-, and Drug Concentration-Dependent Membrane Interactions of Ibuprofen, Diclofenac, and Celecoxib: Hypothetical Association with Their Analgesic and Gastrointestinal Toxic Effects. Preprints 2024, 2024051100. https://doi.org/10.20944/preprints202405.1100.v1

Abstract

Among nonsteroidal anti-inflammatory drugs, ibuprofen, diclofenac, and celecoxib have been frequently used in multimodal analgesia. Recent studies challenge the conventional theory that they exhibit activity and toxicity by acting on cyclooxygenase selectively. We compared their membrane interactions that may be associated with analgesic and gastrointestinal toxic effects. Biomimetic membranes suspended in buffers of different pH were prepared with 1-palmitoyl-2-oleoylphosphatidylcholine, sphingomyelin, and cholesterol to mimic neuronal membranes and with 1,2-dipalmitoylphosphatidylcholine to mimic gastrointestinal mucosae. The membrane interactivity was determined by measuring fluorescence polarization. At pH 7.4, the drugs interacted with neuro-mimetic membranes to decrease membrane fluidity at pharmacokinetically-relevant 0.5–100 μM. Celecoxib was most potent, followed by ibuprofen and diclofenac. At pH 4.0 and 2.5, however, the drugs increased the fluidity of 1,2-dipalmitoylphosphatidylcholine membranes at 0.1–1 mM corresponding to gastroduodenal lumen concentrations after administration. Their membrane fluidization was greater at gastric pH 2.5 than at duodenal pH 4.0. Low-micromolar ibuprofen, diclofenac, and celecoxib structure-specifically decrease neuronal membrane fluidity, which hypothetically could affect signal transmission of nociceptive sensory neurons. Under gastroduodenal acidic conditions, high-micromolar ibuprofen, diclofenac, and celecoxib induce fluidity increases of membranous phosphatidylcholines that are hypothetically associated with gastrointestinal toxic effects, which would enhance acid permeability of protective mucosal membranes.

Keywords

ibuprofen; diclofenac; celecoxib; membrane interaction; lipid composition; medium pH; drug concentration; analgesic activity; gastrointestinal toxicity

Subject

Medicine and Pharmacology, Anesthesiology and Pain Medicine

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.