Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Impact of Induced Acceleration Perturbations in Selected Phases of the Gait Cycle on Kinematic and Kinetic Parameters

Version 1 : Received: 15 April 2024 / Approved: 16 April 2024 / Online: 16 April 2024 (10:19:24 CEST)

How to cite: Ciunelis, K.; Borkowski, R.; Błażkiewicz, M. The Impact of Induced Acceleration Perturbations in Selected Phases of the Gait Cycle on Kinematic and Kinetic Parameters. Preprints 2024, 2024041022. https://doi.org/10.20944/preprints202404.1022.v1 Ciunelis, K.; Borkowski, R.; Błażkiewicz, M. The Impact of Induced Acceleration Perturbations in Selected Phases of the Gait Cycle on Kinematic and Kinetic Parameters. Preprints 2024, 2024041022. https://doi.org/10.20944/preprints202404.1022.v1

Abstract

Background: The prevalence of falls among the older population underscores the imperative of comprehending human adaptations to gait perturbations. Dual-belt treadmills offer a controlled setting for such investigations. The purpose of this study was to examine the effect of acceleration of one belt of the treadmill during three different phases of the gait cycle on kinematic and kinetic parameters and relate these changes to unperturbed gait. Methods: Twenty-one healthy young females walked on a treadmill in a virtual environment, in which five unexpected perturbations were applied to the left belt at the Initial Contact (IC), Mid Stance (MS), and Pre-Swing (PS) phase of the gait cycle. Data from the undisturbed gait and the first disturbance of each trial were extracted for analysis. Results: All perturbations significantly affected the gait pattern, mainly by decreasing the knee extension angle. The perturbation in the IC phase had the most significant effect, resulting in a 248.48% increase in knee flexion torque. The perturbation in the MS phase mainly affected plantar flexion torque, increasing it by 118.18%, while perturbation in the PS phase primarily increased the hip extension torque by 73.02%. Conclusions: The presence of perturbations in the IC and PC phases caused the most aggressive and significant changes in gait parameters.

Keywords

perturbation; gait; treadmill; GRAIL; Motek; OpenSim

Subject

Biology and Life Sciences, Other

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.