Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

S-nitrosylated Proteins Involved in Autophagy in Triticum aestivum Roots: A Bottom-Up Proteomics Approach and In Silico Predictive Algorithms

Version 1 : Received: 14 August 2023 / Approved: 15 August 2023 / Online: 18 August 2023 (02:43:50 CEST)

A peer-reviewed article of this Preprint also exists.

Mazina, A.; Shumilina, J.; Gazizova, N.; Repkin, E.; Frolov, A.; Minibayeva, F. S-Nitrosylated Proteins Involved in Autophagy in Triticum aestivum Roots: A Bottom-Up Proteomics Approach and In Silico Predictive Algorithms. Life 2023, 13, 2024. Mazina, A.; Shumilina, J.; Gazizova, N.; Repkin, E.; Frolov, A.; Minibayeva, F. S-Nitrosylated Proteins Involved in Autophagy in Triticum aestivum Roots: A Bottom-Up Proteomics Approach and In Silico Predictive Algorithms. Life 2023, 13, 2024.

Abstract

Autophagy is a highly conserved catabolic process in eukaryotic cells. Reactive nitrogen species play roles as inductors and signaling molecules of autophagy. A key mechanism of NO-mediated signaling is S-nitrosylation, a posttranslational modification (PTM) of proteins at cysteine resi-dues. In the present work we analyzed the patterns of protein S-nitrosylation during the induc-tion of autophagy in Triticum aestivum roots. The accumulation of S-nitrosylated proteins in the cells during autophagy induced by KNO2 and antimycin A was visualized using monoclonal an-tibodies by Western blot analysis, and proteins were identified using a standard bottom-up pro-teomics approach. Protein S-nitrosylation is a labile and reversible PTM, and therefore SNO group can be lost during experimental procedures. Subsequent bioinformatic analysis using predictive algorithms and protein-ligand docking showed that identified proteins possess hypothetical S-nitrosylation sites. Analyzing protein-protein interaction networks enabled us to discover the targets that can directly interact with autophagic proteins, and those that can interact with them indirectly via key multifunctional regulatory proteins. In this study, we show that S-nitrosylation is a key mechanism of NO-mediated regulation of autophagy in wheat roots. A combination of in silico predictive algorithms with a mass spectrometry analysis provides a targeted approach for the identification of S-nitrosylated proteins.

Keywords

Triticum aestivum; autophagy; nitric oxide; protein S-nitrosylation

Subject

Biology and Life Sciences, Plant Sciences

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.