Preprint Communication Version 1 Preserved in Portico This version is not peer-reviewed

Prediction and Analysis of SARS-CoV-2-Targeting microRNA in Human Lung Epithelium

Version 1 : Received: 9 August 2020 / Approved: 11 August 2020 / Online: 11 August 2020 (06:05:40 CEST)

A peer-reviewed article of this Preprint also exists.

Chow, J. .-S.; Salmena, L. Prediction and Analysis of SARS-CoV-2-Targeting MicroRNA in Human Lung Epithelium. Genes 2020, 11, 1002. Chow, J. .-S.; Salmena, L. Prediction and Analysis of SARS-CoV-2-Targeting MicroRNA in Human Lung Epithelium. Genes 2020, 11, 1002.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus, is responsible for coronavirus disease 2019 (COVID-19) pandemic of 2020. Experimental evidence suggests that microRNA can mediate an intracellular defence mechanism against some RNA viruses. The purpose of this study was to identify microRNA with predicted binding sites in the SARS-CoV-2 genome, compare these to their microRNA expression profiles in lung epithelial tissue and make inference towards possible roles for microRNA in mitigating coronavirus infection. We hypothesize that high expression of specific coronavirus-targeting microRNA in lung epithelia may protect against infection and viral propagation, conversely low expression may confer susceptibility to infection. We have identified 128 human microRNA with potential to target the SARS-CoV-2 genome, most of which have very low expression in lung epithelia. Six of these 128 microRNA are differentially expressed upon in vitro infection of SARS-CoV-2. Twenty-eight and 23 microRNA also target the SARS-CoV and MERS-CoV, respectively. In addition, 48 and 32 microRNA are commonly identified in two other studies. Further research into identifying bona fide coronavirus targeting microRNA will be useful in understanding the importance of microRNA as cellular defence mechanism against pathogenic coronavirus infections.

Keywords

microRNA; SARS-CoV-2; coronavirus; lung epithelia; cellular antiviral defence

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.